植物分子农业 (PMF) 是一种方便且经济有效的生产高价值重组蛋白的方法,可用于生产一系列健康产品,从药物治疗到化妆品。新植物育种技术 (NPBT) 提供了一种比以往更快、更精确地增强 PMF 系统的方法。然而,PMF 和 NPBT 的可行性、监管地位和社会可接受性都存在疑问。本文探讨了欧盟 (EU) Horizon 2020 计划(Pharma-Factory 和 Newcotiana)的主要利益相关者对欧洲 PMF 和 NPBT 的障碍和促进因素的看法。对 7 个国家(比利时、法国、德国、意大利、以色列、西班牙和英国)16 个机构中参与这两个项目之一或两个项目的 N = 20 名个人进行了一对一的定性访谈。研究结果表明,当前的欧盟监管环境和公众对生物技术的看法被视为扩大 PMF 和 NPBT 的主要障碍。来自现有系统的竞争和缺乏针对植物的法规同样对 PMF 超越其当前利基市场的发展构成挑战。然而,受访者认为,传播 NPBT PMF 的好处和目的可以为提高社会对基因改造的接受度提供一个平台。媒体在此过程中的重要性得到了强调。本文还使用多层次视角来探索 NPBT 被利益相关方合法化的方式,以及已经形成并将继续影响欧洲 PMF 发展的系统性因素。
PMF的总置信度限制是一种综合措施,它解释了其计算中涉及的所有因素的合并不确定性。它代表了预期真正的PMF谎言的整体范围,考虑到风暴特征,分水岭反应,气候条件和液压路由的不确定性。Micovic等人(2015年)评估了不列颠哥伦比亚省大坝的这些因素的变化,发现PMP可能比单值PMP估计高40%以上。他们建议将PMP作为置信度限制的范围,而不是暗示a,也许是错误的确定性程度的单个值。
2 FDA 目前正在修订其关于评估用于食用动物的新型抗菌动物药物的微生物效应对人类健康影响的政策。当该政策最终确定时,如果它影响到本指南中的任何政策,则指南将根据需要进行修订。 3 公共主文件 (PMF) 是一个包含公开生成或以其他方式公开可用的数据(通常是有效性、动物安全性、残留化学和环境评估)的文件,NADA 赞助商可以参考这些数据来支持原始或补充的 NADA 批准。PMF 的可用性在《联邦公报》上公布。
粗粒(CG)力场参数是使用真空中纤维素Iβ的原子分子动力学模拟得出的(0%的水分含量),并使用Gromacs软件[5]和CHARMM力场进行的水(95%水分含量)溶剂(95%的水分含量)[6]。72使用自下而上的粗粒方法将葡萄糖残基映射到一个CG位置:在存在水存在下,使用雨伞采样确定了100个纤维素表面之间的非键相互作用,以计算平均力的潜力(PMF)。势能被视为真空模拟中PMF的近似值,因为缺乏水减少了对自由能的熵贡献。使用Boltzmann倒置参数化键合的相互作用,以从与CG位点相对应的原子组之间的键长和角度的概率分布来计算PMF。使用LAMMPS软件进行了粗粒纳米纤维素组件的MD模拟[7]。进行了机械应力MD模拟,以确定具有强力场参数的CG纳米纤维素组件的拉伸模量,其水分含量为0%和95%。
COVID-19 疫情为我们敲响了警钟,提醒我们要提高对抗新型传染病和应对全球危机的能力。加强国际合作,将生产能力多样化,转向不太依赖专业员工技能、昂贵基础设施和昂贵许可证的制造技术,可以提高区域对全球供应链的独立性。植物分子农业 (PMF) - 在植物中制造药品和诊断剂 - 就是这样一种多样化的选择。PMF 可在数周内快速开发产品,高度可扩展至数百万剂量,灵活且用途广泛,使该系统对应急应用具有吸引力。投资这项技术就是对全球解放和公平的医疗保健和供应基础设施的投资。
质粒抗生素抗性基因(ARGS)的共轭转移是ARG传播的重要途径。 据报道,越来越多的抗生素和非抗生素化合物有助于ARG的传播,强调了控制这种水平转移的潜在挑战。 开发阻断或延迟含有ARG质粒转移的共轭抑制剂是控制抗生素耐药性传播的有前途的策略。 尽管这种抑制剂很少见,但它们通常表现出相对较高的毒性和体内效力低,并且它们的作用机制却不足以理解。 在这里,我们研究了一种用于治疗疟疾的青蒿素衍生物(一种用于治疗疟疾)对结合的影响。 dha抑制了埃斯耐里希亚大肠杆菌中超过160倍的体外体外,在小鼠模型中,含有超过160倍的(INCX4质粒)在大肠杆菌中超过160倍(MCR-1)的结合,在体外的体外超过160倍(INCI2质粒)。 它还抑制了带有碳青霉烯电阻基因BLA NDM-5的Incx3质粒的转移,体外超过两倍。 检测细胞内三磷酸(ATP)和质子动力(PMF)以及转录组和代谢组分析的结合表明,DHA损害了电子传输链(ETC)的功能,通过抑制三碳酸(TCA)循环范围,并破坏分裂的PMF,并破坏pmf的临时性。 转移。 我们的发现为提供了新的见解质粒抗生素抗性基因(ARGS)的共轭转移是ARG传播的重要途径。据报道,越来越多的抗生素和非抗生素化合物有助于ARG的传播,强调了控制这种水平转移的潜在挑战。开发阻断或延迟含有ARG质粒转移的共轭抑制剂是控制抗生素耐药性传播的有前途的策略。尽管这种抑制剂很少见,但它们通常表现出相对较高的毒性和体内效力低,并且它们的作用机制却不足以理解。在这里,我们研究了一种用于治疗疟疾的青蒿素衍生物(一种用于治疗疟疾)对结合的影响。dha抑制了埃斯耐里希亚大肠杆菌中超过160倍的体外体外,在小鼠模型中,含有超过160倍的(INCX4质粒)在大肠杆菌中超过160倍(MCR-1)的结合,在体外的体外超过160倍(INCI2质粒)。它还抑制了带有碳青霉烯电阻基因BLA NDM-5的Incx3质粒的转移,体外超过两倍。检测细胞内三磷酸(ATP)和质子动力(PMF)以及转录组和代谢组分析的结合表明,DHA损害了电子传输链(ETC)的功能,通过抑制三碳酸(TCA)循环范围,并破坏分裂的PMF,并破坏pmf的临时性。 转移。我们的发现为此外,在DHA暴露期间,与结合和菌毛产生相关的基因的表达水平显着下调,这表明可以抑制结合的转移设备。
底栖调查确定 Murlach 地区的动物群包括:海笔(Pennatulaphosrea、Virgularia mirabilis)、寄居蟹(Paguridae 包括 Pagurusbernhardus)、蛇尾(Ophiuridae)、海星(Asteroidea:包括 Asterias rubens 和 Astropecten irregularis)、海葵(Actiniaria 包括 Hormathia sp.)、群体海葵(Epizoanthuspapillosus)、软珊瑚(Alcyonacea)、蹲龙虾(Munida sp.)、海蜘蛛(Pycnogonida)、Nephrops Norvegicus、螃蟹(Brachyura 包括 Majidae 和 Liocarcinus depurator)、水螅(Hydrozoa)和水螅/苔藓虫草皮。该地区的沉积物被描述为包含大范围优先海洋特征 (PMF) 栖息地“离岸潮下沙砾”,这是北极蛤蜊 Arctica islandica 的首选栖息地。北极蛤蜊是 PMF,也列入了 OSPAR 受威胁和/或濒临灭绝物种名单(OSPAR,2008 年),但该地区没有记录到北极蛤蜊。
底栖调查确定了 Murlach 地区的动物群包括;海笔(Pennatulaphosrea、Virgularia mirabilis)、寄居蟹(Paguridae 包括 Pagurusbernhardus)、蛇尾(Ophiuridae)、海星(Asteroidea:包括 Asterias rubens 和 Astropecten irregularis)、海葵(Actiniaria 包括 Hormathia sp.)、群居海葵 (Epizoanthuspapillosus)、软珊瑚 (Alcyonacea)、蹲龙虾 (Munida sp.)、海蜘蛛(Pycnogonida)、Nephrops norvegicus、螃蟹(Brachyura,包括Majidae 和Liocarcinus depurator)、水螅(Hydrozoa)和Hydrozoa/Bryozoan 草皮。该地区的沉积物被描述为包括大范围优先海洋特征 (PMF) 栖息地“离岸潮下砂砾石”,这是北极蛤 (Arctica islandica) 的首选栖息地。圆蛤属于 PMF,也位列 OSPAR 受威胁和/或减少物种名单 (OSPAR, 2008),不过该地区并未记录到圆蛤的踪迹。
底栖调查确定了 Murlach 地区的动物群;海笔(Pennatula Phosrea、Virgularia mirabilis)、寄居蟹(Paguridae 包括 Pagurusbernhardus)、海蛇尾(Ophiuridae)、海星(Asteroidea:包括 Asterias rubens 和 Astropecten irrevocables)、海葵(Actiniaria 包括 Hormathia sp.)、群生海葵 (Epizoanthuspapillosus)、软珊瑚 (Alcyonacea)、蹲龙虾 (Munida sp.)、海蜘蛛 (Pycnogonida)、NephropsNephropsnorvegicus、螃蟹(Brachyura,包括 Majidae 和 Liocarcinus depurator)、水螅 (Hydrozoa) 和水螅/苔藓虫草皮。该区域内的沉积物被描述为由大范围的优先海洋特征 (PMF) 栖息地“近海潮下沙子和砾石”组成,这是北极斑驴的首选栖息地。海洋斑驴是一种 PMF,也被列入 OSPAR 受威胁和/或衰退物种名录(OSPAR,2008 年),但该地区没有记录到海洋斑驴。