拓扑绝缘体 (TI) 因其独特的物理特性和广阔的应用前景而在光子学和声学领域引起了广泛关注。由于电子学在构建复杂拓扑结构方面具有优势,它最近成为研究各种拓扑现象的一个令人兴奋的领域。在这里,我们利用标准的互补金属氧化物半导体技术在集成电路 (IC) 平台上探索 TI。基于 Su–Schrieffer–Heeger 模型,我们设计了一个完全集成的拓扑电路链,该电路链使用多个电容耦合电感电容谐振器。我们对其物理布局进行了全面的布局后模拟,以观察和评估显着的拓扑特征。我们的结果证明了拓扑边缘状态的存在以及边缘状态对各种缺陷的显着鲁棒性。我们的工作展示了使用 IC 技术研究 TI 的可行性和前景,为未来在可扩展 IC 平台上探索大规模拓扑电子学铺平了道路。
在这里,我们为黑甲虫T. molitor提供了基因组组装草案。我们的工作为T. molitor增加了越来越多的遗传资源,目前包括线粒体基因组(Liu和Wang,2014年),转录组(Liu等人。,2015年;朱等。,2013年),肠道微生物组(Brandon等人,2018年; Jung等。,2014年),表达模式分析(Johnston等人。,2014年; Oppert等。,2012年)以及基因和肽注释(Liu等人,2015年; Prabhakar等。,2007年)。最近已经证明,可以人为地选择黄色粉虫(Morales-Ramos等人。,2019年)。这一发现强调了基因组需要上下文化和解释选择结果,并探索了更有效的特质优化手段。基因组测序和基于生物信息学的基因组组装术语在补充材料S1中解释了。
多囊卵巢综合征(PCOS)是具有临床和生化高狂异生血质,排卵障碍和多囊性卵巢形态的繁殖年龄女性的常见异质性内分泌代谢疾病。螺旋病是一种由铁积累和脂质过氧化驱动的新型细胞死亡类型。螺旋病在维持氧化还原平衡,铁代谢,脂质代谢,氨基酸代谢,线粒体活性以及许多与疾病相关的其他信号通路方面起作用。铁超载与胰岛素抵抗,葡萄糖耐受性降低以及糖尿病的发生密切相关。对PCOS中铁凋亡的作用的研究有限。PCOS患者的铁蛋白水平升高,卵巢GC中的活性氧增加。研究PCOS患者的铁凋亡对于实现个性化治疗非常重要。本文回顾了PCOS的铁铁作用研究的进展,引入了铁代谢异常与氧化应激介导的PCOS之间的潜在联系,并为诊断和治疗PCOS提供了理论基础。
本文涉及人工智能(AI)的战略角色可能在确定美国,中国和欧盟之间的力量发挥方面发挥作用。AI在整个21世纪都转变为那些试图寻求军事,经济和技术领域至高无上的国家的非常重要的工具。美国正试图通过在AI中进行巨大的资本投资来保留其技术优势,该国在全球创新和国防技术方面开创了开创。中国希望成为技术使用的国际领导者;它正在其监视系统,经济企业以及庞大的腰带和道路项目中实施AI,以促进其影响力,并将其覆盖范围扩展到全球多个地区。相反,欧盟采取了不同的课程:它一直在强调AI使用中的道德规范,并在AI上建立全球治理,从而将欧盟定位为在制定国际AI的国际法规方面的主要参与者之一。正是这些不同的道路引起了新的全球一致性,重新排列权力结构,并引起了这些大型参与者之间的新合作和竞争模式。本文的结果阐明了AI在现代国际关系中所扮演的核心作用,而不是一个简单的配件。它将成为全球安全和权力转移的关键决定因素。从这些新兴动态的角度来看,本文给出了中期观点,即通过AI,国际关系将如何塑造,将出现什么样的新发展以及会出现的问题。
要求在适当的情况下进行开发建议有助于创建新的或增强现有绿色基础设施的新或增强,包括公共和私人开放空间,娱乐场所,公园和正式的户外运动设施,当地自然保护区,野生动植物,野生动植物,野生动植物,林地,林地,分配,繁殖空间,绿色空间,绿色的空间,绿色的绿色范围,绿色的空间以及新的绿色范围,并设计出新的绿色,并设计出新的待遇,并设计出新的待遇,并设计出新的待遇,并设计出新的待遇,以设计新的绿色空间,并设计出新的范围,以设计新的绿色空间,并设计出新的范围。网络,在适当的情况下支持其适当的用途和功能,确保绿色基础设施有助于减轻气候变化的影响,包括通过管理洪水风险和水道的管理和扩展现有的长距离步道的保护和扩展,并根据西埃尔比斯郡的绿色网络的保护和发展绿色网络的发展,并与更高的绿色竞赛群体相关联,以帮助创建较高的山顶竞争,并链接到黑暗的山峰自然风险区域,以及其他型号的竞争群,以及其他型号的范围,以及其他型号的竞争群,以及其他型号的范围,以及其他型号的范围,以及其他型号的范围,以及其他领域的范围,并链接到黑暗的山峰式群体,以及其他范围的范围,以及其他领域的范围,以及其他领域的范围,以及链接的高峰范围。根据当地计划政策EQ5
抽象旨在靶向在黑色素瘤细胞中表达的维生素D受体(VDR),维生素D 3功能化杂交脂质脂质 - 脂质 - 聚合物纳米颗粒(HNP-VDS),该粒子(HNP-VDS)包含聚(乳酸 - 糖甘氨酸酸)(PLGA)核心(PLGA)核心(PLGA)核心和脂质壳的氢化酶(Sodylocation),磷酸化磷酸盐(HNP-VDS)(SPCC)磷酸酯(Hoplocy)(HNP-VDS)(HNP-VDS)(HNP-VDS)合成了1,2-二甲酰基-SN-甘油-3-磷酸乙醇胺-N [琥珀酰基(聚乙烯基)-2000(DSPE-PEG 2000)。将纳米载体优化为脂质表面积覆盖率为97%。体外药物释放研究显示,在最初的24小时内,初始爆发释放,然后是扩散运输。最后,细胞摄取实验表明,HNP-VD有效地获得了B16黑色素瘤细胞,从而导致有前途的媒介物可以提供用于黑色素瘤治疗的治疗剂。
要描述的实验与组蛋白在核功能中的作用有关,特别强调了生物合成反应,这些反应通过引入乙酰基和甲基来改变组蛋白的结构。使用乙酸-C14和蛋氨酸 - 甲基-C'4在孤立的小牛胸腺核中研究了这些反应(参见参见参考文献1)作为前体,将它们的不合格与C14-赖氨酸和其他氨基酸的不合格进行比较,并测试普罗蛋白对不同组蛋白分数的合成的影响。将提供证据,以表明在细胞核中,组蛋白的乙酰化和甲基化很可能发生在多肽链完成后。尤其是乙酰化的组蛋白结构的这种修饰可能会影响组蛋白在体内抑制核糖核酸合成的能力。这种观点得到了以下发现的支持:当孤立的精氨酸组蛋白经过有限的乙酰化时,它们会因小牛胸腺核的DNA依赖性RNA聚合酶的RNA合成抑制剂而失去了许多有效性,因此它们的有效性很大。然而,这种修饰的组蛋白仍然是强烈的碱性蛋白质,它保留了与其得出的母体组蛋白相当的DNA的亲和力。这些发现介绍了组蛋白对核RNA的影响可能涉及的可能性不仅仅涉及对RNA合成的简单抑制,并且可能存在更微妙的机制,这些机制允许抑制和重新激活RNA沿染色体的RNA产生。在过去的几年中,对组蛋白作为染色体活性的调节剂的兴趣已大大提高,因为越来越多的实验证据已经积累了支持组蛋白的作用是抑制染色体
本文以马特·泰比的吸血乌贼比喻来描述金融化,探讨金融化的经济学和政治经济学。本文有四点创新。首先,它关注“吸血乌贼”过程的机制,即金融化在经济中轮换,使部门资产负债表上充斥着债务。其次,它确定了中央银行的关键作用,中央银行是该体系的关键,现在实际上是私营部门债务价值和流动性的担保人。如果没有他们的支持,经济体系很可能早就在 1929 年大萧条中崩溃了。第三,本文认为金融化强加了一种政策锁定。第四,它认为金融化改变了大众的态度和理解,从而尽管经济结果不佳,但仍获得了政治支持。实际上,金融化的政治与经济相辅相成。本文最后总结了一些观点,即为什么主流宏观经济学没有与金融化相当的构造,并讨论了经济目前所处的未知领域。关键词:金融化、债务、中央银行、锁定。JEL 参考文献:E10、E44、E58、G18。
另一方面,更新的EPBD(其修订于2021年开始并于2024年结束)为欧盟的建筑物气候政策提供了更明显的方向。新修订的文本整合了强制性的共同目标和特定的绩效要求,以更好地利用能源并减少现有结构和新结构的碳排放。有史以来第一次,EPBD引入了与“全球变暖潜力” 9对新结构的整个寿命的计算有关的新要求,这对与建筑材料相关的具体碳排放的核算开放。国家政策制定者现在被指控转移大量需求,并评估实现EPBD的能源和气候目标所需的野心水平。由于国家差异,就欧盟将过渡到“仅可持续建筑”的全球区域10,可能会有广泛的结果,因此,建筑部门的信号混合在一起。