摘要:粘多糖化病(MPS)由一组遗传性溶酶体储存障碍组成,这些遗传疾病是由参与糖氨基糖(Gags)代谢的某些酶的缺陷引起的。插孔的异常积累会导致儿童期在各种组织和器官的渐进功能障碍,导致过早死亡。由于当前的疗法是有限的且不具备的,因此需要探索病理学的分子机制,以满足MPS患者未满足的需求以改善其生活质量的需求。溶酶体半胱氨酸组织蛋白酶是一个在众多生理过程中起关键作用的蛋白酶家族。失调。本综述总结了有关MPS疾病及其目前管理的基本知识,并专注于MPS中的插科打s和半胱氨酸的组织蛋白酶的表达以及它们的相互作用,这可能导致与MPS相关疾病的发展。
食物是主要预防与衰老相关的许多慢性疾病的决定性成分,例如心血管疾病(MCV),2型糖尿病,神经退行性疾病和某些癌症。MCV是全球死亡率和发病率的主要原因,并且根据谁的预测,这种情况应在未来20年中持续下去(Mathers and Loncar,2006年)。早期血管功能障碍是MCV发展的起源,并且它们还参与了衰老期间认知障碍的发生。将来,认知功能受损的个体的百分比应大大增加,因为60岁以上的人数在世界上应在2100年到2100年。对于法国,据估计,到2020年,将通过严重的认知能力下降来达到65岁以上的法国人。在这种情况下,研究的主要挑战是鉴定食物,食物,营养,微量营养素或其他可能预防或延迟早期血管功能障碍的微核。这种类型的研究对于精炼和优化营养建议至关重要,并提供了开发可能预防或限制MCV和认知能力下降的新功能性食品所必需的科学基础。有许多流行病学和临床证据,表明健康水果和蔬菜的大量消费尤其是心血管的好处(Wang等,2014)。这些食物是多种生物活性化合物的来源,其中最丰富的是多酚。这些化合物可能会导致植物产品的健康影响,特别是通过它们在维护血管功能中的作用。
这是一篇文章的PDF文件,该文件在接受后经历了增强功能,例如添加了封面和元数据,并为可读性而格式化,但尚未确定记录的确定版本。此版本将在以最终形式发布之前进行其他复制,排版和审查,但是我们正在提供此版本以赋予本文的早期可见性。请注意,在生产过程中,可能会发现可能影响内容的错误,以及适用于期刊的所有法律免责声明。
这项系统评价概述了有关酚类代谢物及其决定因素的吸收,分布,代谢和排泄(ADME)的个人间变异性(IIV)的可用证据。人类研究包括研究(Poly)酚和报告IIV的新陈代谢和生物利用度。一百五十三项研究符合纳入标准。个体间差异主要与肠道菌群组成和活性有关,还与遗传多态性,年龄,性别,种族,BMI,(Patho)生理状态和体育活动有关,具体取决于(Poly)苯酚子属。大多数IIV的特征都很差。观察到两种主要类型的IIV。产生的代谢产物梯度可以进一步分为高和低排泄物,如所有类黄酮,酚酸,前氟氟氟霉素,烷基依赖resorcinols和羟基苯乙醇所见。The other type of IIV is based on clusters of individuals defined by qual itative differences (producers vs. non-producers), as for ellagitannins (urolithins), isoflavones (equol and O - DMA), resveratrol (lunularin), and preliminarily for avenanthramides (dihydro-avenanthramides), or by quali- quantitative metabotypes以不同比例的特定代谢产物的特征,例如黄烷-3-醇,黄酮,甚至异黄酮。未来的工作需要阐明当前的开放问题,从而限制了我们对这种现象的理解,该现象可能会影响饮食(poly)苯酚的健康影响。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
这项研究旨在开发一种基于形态学的模型,以预测聚合物与相分离结构的聚合物混合物的模量和拉伸强度。分析模型采用了打结和互连的骨骼结构(KISS)模型的几何方法,结合了不混合聚合物混合物的形态变化和组件的渗透阈值。通过假设各个形态态的特定厚度的薄界面层,可以解释聚合物/聚合物界面对机械性能的影响。使用IPP/PA,PP/PET和LDPE/PP聚合物混合物的实验数据评估了所提出的模型的预测能力,这些数据来自现有文献。结果在预测数据和观察到的数据之间建立了合理的规定。该模型的预测也与已建立的抗拉强度和杨氏混合物混合物模量的模型的预测进行了比较,这表明了其有效性。将界面区域纳入机械性能的建模过程中代表了所提出的模型的关键区别特征,从而增强了其与聚合物混合物的实际微结构的兼容性。此外,该模型对相对简单的数学计算的依赖提出了另一个关键优势。
3D打印是一个新兴领域,在科学和工业框架中,年复一年地越来越重要。1相关应用涉及从航空航天2、3到生物医学工程4、5通过电子设备,6、7 Mechanics 8-10和许多其他领域。11-13在可能是3D打印的不同材料中,聚合物扮演着重要的角色,聚合物涵盖了市场的最大部分。14 After the development of the first stereolithographi c apparatus (SLA) in the ‘80s, different techniques have been developed, involving the use of polymeric materials in different forms, namely wires or pastes (Fused Deposition Modeling – FDM), powders (Selective Laser Sintering – SLS) or photocurable formulations (SLA and its evolution Digital Light Processing – DLP).这些技术中的每一种都呈现出优势和缺点,正如文献中所报道的那样,尤其是基于光的技术,以最快和最快的
强烈的电鱼连续将代谢能量转化为离子选择性膜的电势差。1,2具有此能力的可植入人造电器器官的制造将需要宏观,稳定,自我修复,流体和能量转化的膜。这里提出的工作引入了一种自组装策略,以准备满足所有这些标准的人造膜。该策略使用水性两相系统的界面来模板并稳定具有可扩展区域的分子薄(〜35 nm)平面块聚合物双层双层分子的形成,这些双层均可能超过10平方米,而没有缺陷。这些膜具有自我修复的能力及其屏障功能,以与离子(〜1mcm2)相匹配磷脂膜的能力。这些膜的流动性可以通过分子载体来直接功能化,该分子载体将钾离子沿浓度梯度沿钠离子降低了浓度梯度。与技术膜的电荷选择性相反,这种生物启发的离子 - 选择性使得在膜上建立电势差,以将等效浓度的NaCl和KCl分离溶液。我们通过与互连的流体储层构造台式原型人造器官来证明适用性,其电压增加了60 mV,每增加一个离子选择性膜串联。
同时,能量结构域中的高分辨率X射线光谱也可以提供对分子系统中超快染色器过程的有用见解。使用单色同步加速器X射线辐射,可以在分子中对特定原子核壳的共振激发。核心兴奋状态的寿命因几个飞秒而异,具有激发能量的相对较浅的核心孔高达1 keV,直到具有较高激发能的深核孔的attosentime量表。通过发射X射线光子或螺旋钻电子的发射在核心激发态的寿命内,可以作为探测分子在同一时间尺度上发生的任何动力学过程的探测。这是“核心时钟”光谱(CHC)的基本概念。6关于
发现具有最小毒性或对正常细胞副作用的新型生物相容性和可生物降解的聚合物制剂是微生物感染和癌症治疗的主要并发症。已经发现了用于聚(氧化乙烷)(PEO)或聚(乙二醇)(PEG)聚合物的各种化学,生物和药物功能。增强抗菌和抗癌活性,结合了金属或金属氧化物纳米颗粒(NP),例如银(Ag),氧化铜(CUO)和氧化锌(ZnO)NPS,在该半晶体和线性聚合物中可能是有效策略。更重要的是,PEO可以形成可以直接应用于身体部位的水凝胶,例如皮肤或粘膜进行局部治疗。PEO通过PEO增加口服吸收和抗癌活性来装饰抗癌药物的纳米载体。PEO聚合物对抗病毒药物作为有效递送系统的各种微型和纳米形式的各种微观成分表现出令人鼓舞的结果。根据最近的进展,讨论了这一微型综述,抗菌,抗病毒和抗肿瘤作为PEO及其衍生物的三种主要治疗应用。