针对严重的孟德尔疾病的PolyQ疾病基因超出规范Polyq 220疾病221 PolyQ疾病基因的子集(即AR,ATN1,ATXN2,CACNA1A,CACNA1A,HTT,HTT,TBP)具有222
摘要:多聚谷氨酰胺 (polyQ) 疾病,包括亨廷顿氏病,是一组由 CAG 重复扩增引起的晚发型进行性神经系统疾病。尽管最近有许多研究调查了 polyQ 疾病的病理特征和发展,但仍有许多问题尚未得到解答。新基因编辑技术的进步,尤其是 CRISPR-Cas9 技术,对于生成相关的 polyQ 模型具有不可否认的价值,这为研究过程提供了实质性支持。在这里,我们回顾了如何使用这些工具来纠正致病突变或创建具有不同 CAG 重复数的同源细胞系。我们描述了各种细胞模型,例如 HEK 293 细胞、患者来源的成纤维细胞、人类胚胎干细胞 (hESC)、诱导性多能干细胞 (iPSC) 和使用基因组编辑技术生成的动物模型。
图1 Polyq疾病蛋白的αFOLD结构。 (A) Predicted AlphaFold protein model of full-length ATXN1 (Human; AF-P54253), (B) ATXN2 (Human; AF-Q99700), (C) ATXN3 (Human; AF-P54252), (D) ATXN7 (Human; AF-O15265), (E) CACNA1A (Human; AF-O00555), (F) TBP(人类; AF-P20226),(G)AR(人类; AF-P10275)和(H)ATN1(Human; AF-P54259)。 (i)预测氨基酸残基1至413的Alphafold蛋白模型HTT(HTTQ21(1-414)),其中包含21个聚谷氨酰胺。 预测的HTTQ21(1-414)AlphaFold模型叠加在灰色(蛋白质数据库ID 6x9O,2.60Å分辨率[99]中显示的Cryo-EM确定的HTT-HAP40蛋白结构[99],其中未在Cryo-Em结构中确定PolyQ区域。图1 Polyq疾病蛋白的αFOLD结构。(A) Predicted AlphaFold protein model of full-length ATXN1 (Human; AF-P54253), (B) ATXN2 (Human; AF-Q99700), (C) ATXN3 (Human; AF-P54252), (D) ATXN7 (Human; AF-O15265), (E) CACNA1A (Human; AF-O00555), (F) TBP(人类; AF-P20226),(G)AR(人类; AF-P10275)和(H)ATN1(Human; AF-P54259)。(i)预测氨基酸残基1至413的Alphafold蛋白模型HTT(HTTQ21(1-414)),其中包含21个聚谷氨酰胺。预测的HTTQ21(1-414)AlphaFold模型叠加在灰色(蛋白质数据库ID 6x9O,2.60Å分辨率[99]中显示的Cryo-EM确定的HTT-HAP40蛋白结构[99],其中未在Cryo-Em结构中确定PolyQ区域。HTTQ21(1-414)模型高度对齐冷冻结构。由黑色矩形构建的残基代表野生型Polyq区域。比例尺表示源自AlphaFold预测的PLDDT值,并表示每日置信度度量[97]:PLDDT> 90,高精度; 90> plddt> 70建模良好; 70> PLDDT> 50低置信度; PLDDT <50差精度。ar,雄激素受体; ATN1,Atrophin 1; atxn1,ataxin 1; atxn2,ataxin 2; atxn3,ataxin 3; atxn7,ataxin 7; Cacna1a,钙电源门控通道亚基Alpha1 A(Cav2.1);冷冻电子,冷冻电子显微镜; HTT,亨廷顿; PLDDT,每个保留模型置信度评分; Polyq,聚谷氨酰胺; TBP,TATA结合蛋白。
所有这些疾病的特征都是在称为胞嘧啶-腺嘌呤-鸟嘌呤 (CAG) 三核苷酸重复的单元中发生特定的基因异常,导致产生具有扩展的多聚谷氨酰胺束的蛋白质。26 产生的蛋白质是有缺陷的,受影响的蛋白质在 polyQ 疾病中在功能和细胞内位置方面有所不同。此外,每种 polyQ 疾病都会影响不同的大脑区域和神经元细胞亚型。26 这些基因异常主要影响中枢神经系统,并与进行性退化、功能障碍和特定神经元群体的死亡有关。21,26,27,38,39
Machado-Joseph疾病(MJD)是一种毁灭性且无法治愈的神经退行性疾病,其特征是进行性共济失调,难以说话和吞咽。因此,受影响的个体最终成为轮椅依赖,需要持续的护理,并面临预期寿命缩短。MJD的单基因原因是ATXN3基因内的三链肽(CAG)重复区域的膨胀,这导致产生的ataxin-3蛋白内聚谷氨酰胺(PolyQ)膨胀。虽然可以很好地确定ataxin-3蛋白作为去泛素化(DUB)酶的作用,因此与蛋白质抗体有关,但仍然存在有关polyq膨胀在ataxin-3对其DUB功能的影响的问题。在这里,我们回顾了当前的Ataxin-3的DUB功能,其DUB目标以及PolyQ扩展对Ataxin-3的DUB功能的影响的知识。我们还考虑了ataxin-3的配音功能的潜在神经保护作用,以及亚Xaxin-3作为基因转录的配音酶和调节剂的相交。ataxin-3是MJD中的主要致病蛋白,似乎也参与了癌症。由于异常去泛素化与神经变性和癌症既有联系,因此对Ataxin-3的DUB功能的全面理解对于在这些复杂条件下阐明潜在的治疗靶标很重要。在这篇综述中,我们旨在将Ataxin-3的知识巩固为DUB和揭幕区域,以进行未来的研究,以帮助对Ataxin-3的DUB功能进行治疗,以治疗MJD和其他疾病。
脊柱和鳞茎肌肉萎缩(SBMA)是由异常的聚谷氨酰胺(Polyq)道在雄激素受体(AR)蛋白中膨胀引起的X连锁,成人发作的神经肌肉条件。SBMA是一种具有高未满足临床需求的疾病。最近的研究表明,改变的ARTER转录活性是疾病发病机理的关键。恢复转录失调而不影响其他AR关键功能,对治疗SBMA和其他与AR相关的疾病具有巨大的希望;但是,如何实现目标方法并将其转化为临床应用尚待理解。在这里,我们表征了AR同工型2的作用,Ar同工型的作用是一种天然存在的变体,编码了缺少Polyq-Harboring结构域的截短AR,是AR基因组功能在雄激素反应性组织中的调节转换。使用重新组合腺相关病毒载体9型的同工型通过恢复PolyQ AR降低转录活性,从而改善SBMA小鼠中疾病表型的疾病表型。
研究项目 - 确定DRPLA中的线粒体代谢:一种可能的新型治疗方法,由Andrea和Paul Compton的捐赠使该项目成为可能,他们的儿子受Drpla影响,并创造了一个名为Curedrpla的基金会。首席研究人员:伦敦大学学院(英国)的Paola Giunti教授和Rosella Abeti博士以及来自英国国王学院(英国)的Manolis Fanto博士。科学摘要:牙齿果核糖萎缩症(Drpla)是一种罕见的常染色体显性神经退行性疾病,其特征在于小脑共济失调,癫痫,肌阵挛,肌阵挛,浮力术和痴呆症。目前,这种类型的疾病尚无治愈方法。我们的研究首先旨在表征细胞模型中Drpla的神经病理生理学,其次是验证药物学方法以阻止该疾病的进展,最终改善了患者的生活质量。先前对DRPRA患者的研究表明,线粒体三磷酸腺苷的产生降低。因此,支持扩展的PolyQ的潜在直接效应,从而导致线粒体功能障碍。此外,研究其他相关疾病的研究,例如脊椎小脑共济失调(SCAS)和亨廷顿氏病(HD),与DRPLA共享表型相似性,证明了线粒体功能障碍在发病机理中的作用。这些包括线粒体电子传输链复合活动中的缺陷。线粒体功能障碍在神经退行性和癫痫病中都进行了很好的研究,均参与DRPLA。我们的策略是利用先前获得的知识来开发更有效的药理学干预措施来治疗Drpla。先前关于癫痫和弗里德里希共济失调(FRDA;一种罕见的神经退行性疾病)的研究表明,核因子红系2相关因子2(NRF-2)诱导剂可以保护细胞免受氧化应激和线粒体功能障碍的影响,这是神经元死亡的主要原因。
阿尔茨海默氏症、帕金森氏症和亨廷顿氏病可能是由增强蛋白质聚集的突变引起的,但是我们对这些途径的分子参与者的了解还不够,无法开发出治疗这些毁灭性疾病的方法。在这里,我们筛选可能增强秀丽隐杆线虫聚集的突变,以研究防止失调稳态的机制。我们报告说,气孔素同源物 UNC-1 激活 ASJ 感觉/内分泌神经元中磺基转移酶 SSU-1 的神经激素信号传导。ASJ 中产生的一种假定激素靶向核受体 NHR-1,后者在肌肉中自主作用于细胞,调节多聚谷氨酰胺重复 (polyQ) 聚集。第二个核受体 DAF-12 起着与 NHR-1 相反的作用,以维持蛋白质稳态。 unc- 1突变体的转录组学分析揭示了参与脂肪代谢的基因表达的变化,这表明由神经激素信号传导控制的脂肪代谢变化有助于蛋白质稳态的维持。此外,参与已鉴定信号通路的酶是治疗由蛋白质稳态破坏引起的神经退行性疾病的潜在靶点。