1个学生,G.V.I.S.H.,Amravati(MS),印度2物理学系G.V.I.S.H. 通过使用纳米沉淀方法制备了添加低密度聚乙烯(LDPE)的聚乙烯乙二醇(PEG)的多孔微粒。 使用傅立叶变换红外光谱,X射线衍射,扫描电子显微镜表征了准备的粉末样品。四面红外转化(FTIR)光谱证实了LDPE中PEG的存在,PEG在LDPE中的效应在LDPE中观察到了X-射线的峰值(X-Ray衍射)。模式表明没有新的阶段形成。 扫描电子显微镜图像表明,聚乙烯乙二醇的浓度降低了聚集,并增加了聚乙烯微粒的球形程度。 关键字:LDPE/PEG微粒,FT-IR,X射线衍射,SEM。 简介微粒被定义为尺寸小于1000 µm且大于1 µm的结构,也可以从可生物降解和不可生物降解的材料中获得。 纳米沉淀,乳液扩散,双重乳液。 [1]聚乙烯(PE)是一种基于分子构象的可量身定制特性的广泛使用的塑料,其应用从膜包装和电气绝缘到容器和管道。1个学生,G.V.I.S.H.,Amravati(MS),印度2物理学系G.V.I.S.H.通过使用纳米沉淀方法制备了添加低密度聚乙烯(LDPE)的聚乙烯乙二醇(PEG)的多孔微粒。使用傅立叶变换红外光谱,X射线衍射,扫描电子显微镜表征了准备的粉末样品。四面红外转化(FTIR)光谱证实了LDPE中PEG的存在,PEG在LDPE中的效应在LDPE中观察到了X-射线的峰值(X-Ray衍射)。模式表明没有新的阶段形成。扫描电子显微镜图像表明,聚乙烯乙二醇的浓度降低了聚集,并增加了聚乙烯微粒的球形程度。关键字:LDPE/PEG微粒,FT-IR,X射线衍射,SEM。简介微粒被定义为尺寸小于1000 µm且大于1 µm的结构,也可以从可生物降解和不可生物降解的材料中获得。纳米沉淀,乳液扩散,双重乳液。[1]聚乙烯(PE)是一种基于分子构象的可量身定制特性的广泛使用的塑料,其应用从膜包装和电气绝缘到容器和管道。pe主要基于密度和分子分支的程度。在半晶体材料(如聚乙烯和聚氟乙烯)中,材料的响应取决于分子结合和体积分数,除了温度和应变速率外,还取决于结晶度的体积分数。这些材料可以被认为是由一个无定形相组成的分子网络,该相位包含具有随机定向的结晶石相的纠缠链,其作用为物理交联。[2]纳米沉淀,也称为反应降水,脱溶液,溶剂置换和溶剂转移,由Fessi et.Al.In 1989描述,是一种开发纳米颗粒和微粒的方法[1],但有关其他Polymers,包括Polyolefimers,有限的含量。由于开发的方法不使用添加剂(例如表面活性剂),因此它提供的颗粒没有杂质会诱导生物体的不良影响。需要控制纳米沉淀产生的\颗粒大小的方法。[3]此外,该方法不需要或低表面活性剂浓度。[4]纳米沉淀技术的主要原理是界面
生物化学和材料科学领域将继续开发新程序,这些程序有可能发明新的生物塑料并改进现有类型。已经描述的一个挑战是合成生物相容性材料和从生物资源中提取的材料,以与石油基商品热塑性聚合物相媲美。例如,聚乙烯具有抗生物降解能力,使其可以持续几个世纪而不会失去其核心特性。尽管如此,在生物基聚乙烯下,可以用利用农作物种植或制造的材料、生物聚合物的副产品或来自生物质或直接空气捕获技术的碳来替代聚乙烯(Kumar 等人,2023 年)。通过基于定向进化的酶工程,不仅可以设计从生物质到聚乳酸(许多商品热塑性塑料的重要组成部分)的途径,还可以设计到特定的分支模式,以进一步改善生物塑料的性能(Narancic 等人,2020 年)。
取样容器 配备流通池和取样龙头的潜水泵。 深度探测器 样品容器(用于 TSS 的塑料容器) 预清洁的样品容器(用于金属的塑料容器;如果需要分析汞或六价铬,可能需要额外的玻璃容器) 实验室提供的试剂水(不含金属) 塑料(聚乙烯)可重新密封的食品储藏袋 塑料(聚乙烯)垃圾袋 专用的干净冷却器(带冰块)(金属样品) 一次性手套(不含滑石粉) 蒸馏水 带冰块的冷却器(TSS 样品)
苯乙烯-马来酸酐共聚物 (SMA) 聚酰胺 (PA) (热塑性) 聚氨酯 (PU R) 热塑性聚酯 聚对苯二甲酸丁二醇酯 (PBT) 聚对苯二甲酸乙二醇酯 (PET) 聚对苯二甲酸丙二醇酯 (PTT) 聚萘二甲酸乙二醇酯 (PEN) 液晶聚合物 (LCP) 聚缩醛 (POM) 聚苯醚 (PPE) 热塑性弹性体 (TPE) 热塑性聚烯烃弹性体 (TPE-O) 热塑性聚烯烃硫化橡胶 (TPE-V) 热塑性聚酯弹性体 (TPE-E) 苯乙烯嵌段共聚物 (TPE-S) 热塑性共聚酰胺弹性体 (TPE-A) 热塑性聚氨酯 (TPE-U) 3.1.10 含氟聚合物 聚四氟乙烯 (PTFE) 聚偏氟乙烯 (PVD F) ETFE 聚乙烯氯三氟乙烯 (EC FTE) THV 3.1.11 其他热塑性塑料 脂肪族聚酮 热固性树脂 3.2.1 不饱和聚酯 (UP 树脂) 3.2.2 酚醛树脂 - 苯酚甲醛聚合物 (PF) 3.2.3 环氧树脂 3.2.4 (热固性)聚氨酯 (PUR) 3.2.5 其他热固性塑料 增强材料 3.3.1 玻璃纤维和玻璃毡 玻璃增强热塑性塑料 R-RIM 和 S-RIM 3.3.2 其他纤维 天然纤维 芳族聚酰胺纤维 碳纤维 金属纤维 颗粒增强材料 纳米复合材料
acc美国化学委员会AFL-CIO美国劳工联合会和工业组织国会AG律师总检察长ALEC美国立法交易所委员会API美国石油研究所ASTM美国测试与材料学会(以前)BPA BISPHENOL A CAA CAA CAA CAA CAA CAA CAA CAA CAA CA. FMCG fast-moving consumer goods FTC Federal Trade Commission MassPIRG Massachusetts Public Interest Research Group MCRWM Massachusetts Coalition for Responsible Waste Management MOU memorandum of understanding MTBE methyl tert-butyl ether NAAQS National Ambient Air Quality Standards NAS National Academy of Science PCB polychlorinated biphenyls PET polyethylene terephthalate PVC polyvinyl chloride TSCA有毒物质控制法
球校准阀组件(S4V,S5V) - 陶瓷球(FDA批准);坦塔尔姆春天; FKM座椅和O形圈或 - 陶瓷球(FDA批准);不锈钢弹簧; EPDM座位; Santoprene®O形旋风泵头辊(S3V,S4V)聚乙烯(S3V,S4V)聚碳酸酯泵头导胶(S4V,S5V)聚乙烯辊衬套(S3V,S4V,S4V)管配件,注射配件PVC或聚丙烯(均为NSF)连接螺母PVC或聚丙烯(均列出的NSF)3/8“适配器(S3V)PVC或聚丙烯(均为NSF列出的NSF列出的均固定型号)均未列出NOSEREM pVC或POLPORPORPYLEN(两个NSF)闩锁(S3V)聚丙烯泵头拇指螺旋体(S4V,S5V)不锈钢;
PDMS Poly(dimethylsiloxane) P(DMS- co -HMS) Poly(dimethylsiloxane- co -methylhydrosiloxane) PE Polyethylene PEG Poly(ethylene glycol) PMMA Poly(methyl methacrylate) PP Polypropylene PPG Poly(propylene glycol) PPM Post-polymerization modification PPO Poly(propylene氧化物)PTMEG聚(四甲基乙醚乙醚)ptmeg-u up-u up-u up-u up-upyechelic聚(四甲基二甲基乙醚)PTMEG-u甘油PTMEG-ptmeg-ptmeg ptmeg ptmeg ptmeg ptmeg ptmeg ptmeg氧化物)聚(四甲基甲基乙醚) acrylate SET-LRP Single electron transfer living electron polymerization SPM Supramolecular polymer materials TEG Tetraethyleneglycol T g Glass transition temperature TMS Trimethylsilyl TPE Thermoplastic elastomer UPy 2-Ureido-4-pyrimidinone (UP) 3 T UPy-terminated three-arm siloxane oligomers UPy-MA UPy-methacrylate
脂质体是人工制备的具有脂质双层的囊泡,可用作治疗各种癌症和其他疾病的药物载体分子。传统脂质体由于被网状内皮系统快速摄取而半衰期较短,这导致脂质体浓度和药效降低。脂质体被聚乙二醇包裹后,巨噬细胞对脂质体的摄取减少。这被称为隐形效应,可延长脂质体在循环中的半衰期,从而提高药效。被聚乙二醇包裹的脂质体也称为空间稳定脂质体或隐形脂质体。本综述重点介绍隐形脂质体的特点、制备方法、应用、优点和局限性。
摘要:塑料是由具有高浓度的石化成分的聚合物制成的,这些石化成分源自煤炭,石油和天然气以及大多数化石和基于生物的塑料的聚合物。本文的目的是通过从次要来源收集数据和信息来对当前状况和潜在的环境安全进行批判性审查。获得的数据表明,存在几种不同的塑料,包括聚丙烯(PE),聚乙烯三苯二甲酸酯(PET),聚氯乙烯(PVC),高密度聚乙烯(HDPE)(HDPE),低密度的多乙烯(LDPE)和贫穷的环境(PS)以及对环境(PS)的差异(PS)的差异(PS)的差异(ps)。以及对适当处置的粗心社区行为。在尼日利亚,生产的塑料垃圾中有88%的回收未回收。 在没有适当的废物管理和垃圾控制技术的情况下,将可生物降解的塑料用于专业应用是一个有前途的想法。 意识到Sakaiensis 201-F6是一种全新的细菌菌株,被发现能够分解宠物。 高密度聚乙烯被发现受到achromobacter xylosoxidans的负面影响。 因此,正在进行大量研究,以创建通过化石和生物来源作为优秀技术和废物管理的环境可接受的策略来降解聚合物的方法。 doi:https://dx.doi.org/10.4314/jasem.v28i1.19 Open Access策略:Jasem发表的所有文章均在Ajol提供的PKP下开放访问文章。 版权策略:©2024作者。在尼日利亚,生产的塑料垃圾中有88%的回收未回收。在没有适当的废物管理和垃圾控制技术的情况下,将可生物降解的塑料用于专业应用是一个有前途的想法。意识到Sakaiensis 201-F6是一种全新的细菌菌株,被发现能够分解宠物。高密度聚乙烯被发现受到achromobacter xylosoxidans的负面影响。因此,正在进行大量研究,以创建通过化石和生物来源作为优秀技术和废物管理的环境可接受的策略来降解聚合物的方法。doi:https://dx.doi.org/10.4314/jasem.v28i1.19 Open Access策略:Jasem发表的所有文章均在Ajol提供的PKP下开放访问文章。版权策略:©2024作者。这些文章在出版后立即在全球范围内发布。不需要特别的许可才能重用Jasem发表的全部或部分文章,包括板,数字和表。本文是根据Creative Commons Attribution 4.0 International(CC-By-4.0)许可证的条款和条件分发的开放式文章。,只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。引用本文为:Igiebor,F。A;乔纳森(E. M); Haruna,O; Alenkhe,B。I.(2024)。塑料生物降解:现在的情况及其对环境安全的潜在影响。J. Appl。SCI。 环境。 管理。 28(1)165-178日期:收到:2023年12月10日;修订:2024年1月11日;接受:2024年1月21日发布:2024年1月30日关键字:塑料;环境;退化;聚合物;根据Saminathan等人的安全。 (2014),塑料是由多种合成或半合成有机和无机物质制成的聚合物产品。 它们包含大量从煤,石油和天然气获得的石化成分。 许多聚合物材料,例如聚氯乙烯(PVC),多酰基酸或多乳酸(PLA),多乙二醇酯(PCL),聚乙烯(PE),聚氨酯(PUR),聚氨酯(PUR),聚羟基丁二字母(PHB),pHB),聚羟基氨基酯(pha),聚乙二醇(PHA),聚乙二烯基乙二醇(phayyyly乙基乙烯基类),异乙二醇乙二醇(pha) (PBS),聚丙烯(PP)和聚苯乙烯(PS)通常用于各种目的(Muhamad等,,SCI。环境。管理。28(1)165-178日期:收到:2023年12月10日;修订:2024年1月11日;接受:2024年1月21日发布:2024年1月30日关键字:塑料;环境;退化;聚合物;根据Saminathan等人的安全。(2014),塑料是由多种合成或半合成有机和无机物质制成的聚合物产品。它们包含大量从煤,石油和天然气获得的石化成分。许多聚合物材料,例如聚氯乙烯(PVC),多酰基酸或多乳酸(PLA),多乙二醇酯(PCL),聚乙烯(PE),聚氨酯(PUR),聚氨酯(PUR),聚羟基丁二字母(PHB),pHB),聚羟基氨基酯(pha),聚乙二醇(PHA),聚乙二烯基乙二醇(phayyyly乙基乙烯基类),异乙二醇乙二醇(pha) (PBS),聚丙烯(PP)和聚苯乙烯(PS)通常用于各种目的(Muhamad等,
影响石油和天然气设备技术状况的最重要因素之一是腐蚀[1]。通过应用保护性抗腐蚀涂层,可以实现管道,阀门和配件的腐蚀保护[2]。有几种类型的反腐蚀涂料,这些涂料最广泛地用于行业。用于埋入或淹没管道的主要类型是液体油漆涂层(环氧或聚氨酯(PU)),带有环氧粉末的挤出式三层涂层以及两层聚乙烯或聚丙烯或聚丙烯,塑料胶带,PVC,PVC,聚酯或聚乙烯或聚乙烯纤维固定式涂层(可提供)corrosion sentras corrosion sentras sentrail Sentrion senterion senterion sentras senterion senterion sentras senterion sentrail senterion senterion。每种方法都有其优势和缺点。因此,确定最方便,最可靠的涂层是石油和天然气行业的至关重要的任务[3]。