在这些聚合物中,半晶体脂肪族聚酯(PCL)(PCL)(PCL)在从食品包装到生物医学应用的多个域中发现了应用。PCL的多功能性及其在许多工业应用中的用法主要与其固有的特征术有关,包括热(Tg¼65c和tm¼60c)和机械稳定性以及在多种聚合物(例如聚(乙烯基氯化物)或聚(双酚-A碳酸盐))。2此外,可以在适当的修饰阳离子上调整PCL的性质。例如,可以通过制备含有3个 - 可己酮和其他单体的共聚物来定制其机械性能。此外,如使用
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月5日。 https://doi.org/10.1101/2025.02.05.636647 doi:Biorxiv Preprint
对纯化学品,石油和药物等行业中聚合膜的需求强调了优化有机分离系统的需求。这涉及提高性能,寿命和成本效率,同时解决化学和机械不稳定性。这里开发了一个模型,该模型与膜性能相关联,该模型由物种I的渗透溶质浓度(CPI)指示,与在跨膜压力(δP)或压缩应力下渗透或渗透期间的实时压缩年轻的模量(E)。较低的CPI值表示性能更好。模型集成了溶剂密度(ρI),膜(δM)的溶解度参数,溶质(ΔSO),溶剂(δSV)以及膜约束的程度(ϕ)。还认为膜肿胀(LS)和压实(LC)具有相关的泊松比(γ),为预测膜性能提供了全面的框架。关键特征是无量纲参数β,定义为LN(LS/LC),它描述了不同的操作方案(β<1,β= 1,β> 1)。此参数将膜的属性特性与机械性能联系起来。使用三个有机分离系统(a,b和c)证明了该模型的能力,该系统分别使用纳米过滤(NF)膜分别将异亮氨酸与DMF,甲醇和己烷溶液分别分离,低,中等和高E值。跨膜压力范围为0.069至5.52 MPa(10 - 800 psi),β<1。中度压实,导致中等的膜电阻和致密性,被证明是有益的。性能结果表明,系统B(中E)>系统A(低E)>系统C(高E)的趋势,与降低溶剂 - 溶质相互作用(ΔΔSOSV)和压实水平相关。CPI - β图显示了三个不同的斜率,对应于弹性变形,塑性变形和膜聚合物的致密化,从而引导
阿姆斯特丹,2025年2月5日,07:00小时CET - N.V. Avantium N.V.是可再生和圆形聚合物材料的领导者,已与EPC Engineering&Technologies Gmbh签署了一家国际技术提供商以及工程和工厂建筑公司的合作。这种合作伙伴关系旨在推进连续的PEF聚酯生产技术,以每年及以后的100千摩尼尼斯的植物能力为目标。合作将结合两家公司的专业知识,以商业化PEF的连续聚合(“ PEF CPOL技术”)。Avantium和EPC将将其各自的技术和过程与Polymetrix Ag的固态聚合(SSP)一起整合。PEF CPOL技术将包含在Avantium的YXY®技术许可方案中。EPC将提供工程,工厂建设服务和关键设备,包括从Polymetrix到Avantium的未来被许可人的SSP设备。 Avantium开发了其专有的YXY®技术来生产FDCA(Furandicarboxylic Acid),这是完全基于植物的和圆形聚合物PEF(聚乙烯呋喃酸盐)的必不可少的成分。 pef由Avantium品牌为Releaf®。 Avantium目前正在荷兰Delfzijl创建世界上第一个商业FDCA工厂。 该FDCA旗舰工厂将在Avantium的商业化和许可策略中发挥至关重要的作用。 商业FDCA工厂允许Avantium将FDCA和Releaf®直接出售给Offtake Partners,同时还向全球工业合作伙伴提供全面的技术许可证。EPC将提供工程,工厂建设服务和关键设备,包括从Polymetrix到Avantium的未来被许可人的SSP设备。Avantium开发了其专有的YXY®技术来生产FDCA(Furandicarboxylic Acid),这是完全基于植物的和圆形聚合物PEF(聚乙烯呋喃酸盐)的必不可少的成分。pef由Avantium品牌为Releaf®。Avantium目前正在荷兰Delfzijl创建世界上第一个商业FDCA工厂。该FDCA旗舰工厂将在Avantium的商业化和许可策略中发挥至关重要的作用。商业FDCA工厂允许Avantium将FDCA和Releaf®直接出售给Offtake Partners,同时还向全球工业合作伙伴提供全面的技术许可证。在这种技术许可下,工业合作伙伴可以使用Avantium的专有YXY®技术在大规模生产设施中生产FDCA和PEF。Avantium和EPC工程和技术已经在2017年共同努力,当时EPC使用熔体状态聚合制定了每年25千座PEF连续聚合厂的概念设计。这种概念设计是联合开发协议的起点,即将聚合技术进一步扩展到每年及以后的100千摩孔。Polymetrix将伴随其连续的固态聚合知识贡献。通过这种合作,Avantium能够将其YXY®技术许可包扩展到完整的连续PEF生产过程,包括工业规模的绩效保证,无论是Greenfield,Brownfield还是Raturofit工厂。EPC Engineering&Technologies董事总经理Karol Kerrane评论:“ EPC不断努力寻找技术解决方案以克服全球环境挑战。通过与Avantium的国际合作,我们充满信心,通过为连续PEF生产提供世界上最好的实践,共同取得巨大的成功。” Avantium执照的董事Bart Langius补充说:“与EPC和Polymetrix的合作标志着我们的使命一步,是在聚酯行业添加我们可再生和循环的聚合物PEF。通过将我们的专业知识与EPC和Polymetrix相结合,我们相信我们可以为潜在的许可合作伙伴提供一个全面的许可方案,将Avantium的YXY®技术与连续的PEF聚合技术集成在一起,从而提供了基于化石的塑料的高性能替代方案。”
Tommaso Nicolini,Shekhar Shinde,Reem El-Actar,Gerardo Salinas,Damien Thuau,Mamatimin Abbas,Matthieu Raoux,Jochen Lang,Eric Clout,Eric Clout,Alexander Kuhn,Alexander Kuhn,Alexander Kuhn* T. Nicolini博士,G。Salinas博士,G。Salinas,PROFIV。Bordeaux,CNRS,Bordeaux INP,ISM,UMR 5255,33607 PESSAC,法国电子邮件:kuhn@enscbp.fr S. S. S. S. Shinde,E。Cloutet Uni博士。 Bordeaux,CNRS,Bordeaux INP,LCPO,UMR 5629,33615 Pessac,法国R. El-Actar,D。Thuau博士,M。AbbasUniv博士。 波尔多,CNRS,Bordeux INP,CBMN,UMR 5248,33600 PESSAC,法国,Bordeaux,CNRS,Bordeaux INP,ISM,UMR 5255,33607 PESSAC,法国电子邮件:kuhn@enscbp.fr S. S. S. S. Shinde,E。Cloutet Uni博士。Bordeaux,CNRS,Bordeaux INP,LCPO,UMR 5629,33615 Pessac,法国R. El-Actar,D。Thuau博士,M。AbbasUniv博士。 波尔多,CNRS,Bordeux INP,CBMN,UMR 5248,33600 PESSAC,法国,Bordeaux,CNRS,Bordeaux INP,LCPO,UMR 5629,33615 Pessac,法国R. El-Actar,D。Thuau博士,M。AbbasUniv博士。波尔多,CNRS,Bordeux INP,CBMN,UMR 5248,33600 PESSAC,法国,波尔多,CNRS,Bordeux INP,CBMN,UMR 5248,33600 PESSAC,法国,
该卷是由Noyes Publishers开发的有关应用聚合物科学技术的系列的一部分。所开发的系列旨在为工程师,产品开发和应用专家以及这些材料的最终用户提供有关聚合物的最新设计和技术信息。本卷涵盖了高级聚合物处理操作,旨在为独特产品和制造方法提供一些最新的行业开发。本卷的贡献者来自国际社会的行业和学术界。本书包含九个章节,涵盖了高级处理应用程序和技术。Subject areas covered include the processing of unsaturated polyesters and various prepolymers, new PVC processing techniques, PES and Nylon-3 chemistry, applications and processing methods, reactive extrusion technologies, latest developments and applications of pultrusion processing operations, electron beam processing of polymers, latest developments in the processing of thermoplastic composites, and the application of polymer technology to metal injection molding.
可见光光聚聚合正面临着一场革命,随着节能光源的发展,即LED。持续开发光电系统的努力在聚合速率和单体转化方面优于现有的系统,从学术角度来看,寻找尚未在光聚聚合中尚未研究的新染料的搜索仍然非常活跃。最近,萘醌 - 咪唑基和萘醌 - 噻唑衍生物已被鉴定为可在人造光源或太阳下设计的I型和II型光通剂的有趣结构。萘喹酮是生物化化合物,可以大大减少光聚合的碳足迹。萘喹酮也是用于设计光初步器的廉价前体,使其能够设计低成本的吸光结构。通过其广泛的吸收光谱,萘喹酮也是设计阳光光学剂的出色候选者。在这篇综述中,报告了这两个脚手架的不同结构,并提供了光学能力的比较。
抽象分子模拟扩展了我们学习生物分子相互作用的能力。由具有不同理化特性的不同脂质组成的生物膜是参与细胞功能的高度动态环境。蛋白质,核酸,聚糖和生物兼容的聚合物是细胞质和脂质膜界面中细胞过程的机械。脂质物种直接调节膜特性,并影响其他生物分子的相互作用和功能。天然分子扩散会导致局部脂质分布的变化,从而影响膜特性。将生物物理和结构膜和生物聚合物的特性投射到二维平面可能是有益的,可以在降低的尺寸空间中量化分子特征,以识别感兴趣界面的相关相互作用,即膜表面或生物聚合物表面接口。在这里,我们提出了一个工具箱,旨在将膜和生物聚合物特性投射到二维平面上,以表征脂质 - 脂质与脂质聚合物接口之间的相互作用模式和空间相关模式。该工具箱包含两个使用MDakits体系结构实施的枢纽,一个用于膜,一个用于生物聚合物,可以独立或一起使用。三个案例研究证明了工具箱在GitHub中具有详细教程的多功能性。该工具箱和教程将定期更新其他功能和决议,以扩展我们对生物分子在二维中的结构 - 功能关系的理解。
组织工程(TE)已成为一种有希望的治疗策略,采用人工脚手架来再生功能性心脏组织,并为创新治疗方法提供了新的希望。一种直接产生可生物降解的导电聚合物复合材料的简单方法涉及将导电聚合物与可生物降解的聚合物直接混合。这种方法的灵活性可以开发出多种可生物降解的导电聚合物支架,这些支架已在组织工程和再生医学中进行了广泛探索。该技术成功地结合了两种聚合物类型的优势,但它可能面临诸如电导率和生物降解性的潜在折衷方案之类的挑战。本综述强调了通过选择适当的聚合物类型和比率来量身定制降解速率和电导率的潜力,从而确保适应各种生物医学应用。
为了提高聚合物的生物相容性,人们从化学、物理或生物角度改善其表面特性。1 通过在聚合物/聚电解质的主链上引入各种不稳定或可水解基团(如酯、碳酸酯、酰胺、尿素或氨基甲酸酯)来控制其生物降解性。4 因此,研究成果促成了一类新型刺激响应性聚合物的开发。这些聚合物是对周围环境的物理化学变化敏感的材料。它们能够检测到微小的环境变化,并通过自组装或其物理化学性质的显著变化做出反应。这些聚合物会随着环境条件(如 pH、温度、溶剂、盐离子强度、光以及磁场或电场)的变化而发生结构和构象变化。它们的根本特征之一仍然是修饰的可逆性:也就是说,一旦引起物理化学性质改变的刺激消失,它们就能恢复到初始状态(结构化、连接、可降解系统除外)。刺激响应性聚合物只能由天然或合成聚合物制成,也可以通过在现有聚合物主链上加入响应性化合物或功能制成。在过去二十年里,由于大量新兴应用的出现,人们对这类材料的兴趣日益浓厚。环境变化或刺激分为三类:物理刺激(机械应力、电/磁场、超声波、光、温度)、化学刺激(电化学、 pH 值、离子强度)和生物刺激(酶、生物分子)。5-7 图 1 显示了不同类别的刺激以及每类刺激引起的修饰类型。