抗生素是最常开处方的药物,已广泛用于预防或治愈人类和兽医疾病,无疑导致大量释放到下水道网络和废水处理系统中,这是一种热点,其中抗生素转化的发生和转化。细胞外聚合物物质(EPS),通过微生物活性分泌的生物聚合物,在细胞粘附,养分保留和毒性耐药性中起重要作用。然而,与抗生素的耐药性和去除相关的污泥EP的潜在作用尚不清楚。这项工作总结了最先进的微生物EPS的组成和物理化学特征,突出了EPS在去除抗生素中的关键作用,评估其在不同的抗生素暴露下的防御性能,并分析可能影响抗抗生素的吸附和生物转化行为的典型因素。接下来,分析了微生物EPS与抗生素抗性基因之间的相互作用。未来的观点,尤其是微生物EPS在抗生素毒性检测和防御方面的工程应用也受到了强调。©2022作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
MTX-PEG对蛋白质的吸附量最高,经DMMA修饰后吸附量明显降低,说明DMMA修饰后电荷反转有助于减少非特异性蛋白质的吸附。与CG-MTX-PEG和CDPM相比,MTX-PEG及胶束的吸附量均较低,这可能与PEG的惰性结构有关。PEG的惰性结构能有效降低蛋白质的吸附,尤其是当其覆盖在胶束表面时,能有效减少蛋白质的接触,提高体系的稳定性[27,42]。这些结果说明带负电荷的PEG覆盖胶束能有效降低血液循环中蛋白质的吸附。3.5 细胞摄取
本文档是公认的手稿版本的已发表作品,该作品以ACS Nano的最终形式出现,版权所有©2022 American Chemical Society,在出版商的同行评审和技术编辑之后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acsnano.2c06682。
金属腐蚀已成为全球性问题,它不仅因机械强度下降而引发事故,而且造成巨大的经济损失。缓蚀剂是保护金属材料免受不同介质腐蚀最有效和最经济的策略之一。一般来说,缓蚀剂有无机缓蚀剂、有机缓蚀剂和聚合物缓蚀剂[1-3]。与无机缓蚀剂相比,有机缓蚀剂和聚合物缓蚀剂价格低廉,功效更强。更重要的是,有机缓蚀剂和聚合物缓蚀剂都可以合理设计并易于合成。众所周知,缓蚀剂在金属表面的吸附和相应的黏附性能在缓蚀剂的应用中起着重要作用[4]。因此,吸附基团被广泛应用于缓蚀剂的结构设计中。一些先驱性综述论文已经总结了有机缓蚀剂的研究进展[5,6]。与小分子有机缓蚀剂相比,聚合物缓蚀剂具有以下优势(如图1所示):(i)通过调整重复单元的数量,可以在一个分子中引入更多的吸附基团;(ii)不同的吸附基团可以通过共聚(例如单体A和单体B共聚)集成到同一聚合物中,产生协同吸附效应;(iii)聚合物缓蚀剂的超分子自组装结构可以优化聚合物缓蚀剂的结构,以达到最佳的吸附性能;(iv)聚合物链的柔韧性和移动性提供了可加工性,也可以与无机缓蚀剂形成杂化/复合材料,以达到更好的防腐性能。杂环化合物(如图1所示)由于杂原子的电子中心密集,被认为是优异的缓蚀剂,然而其合成过程通常对环境十分有害。可以通过增加聚合物抑制剂的分子量(换句话说,重复单元的数量)来增加其吸附位点,并且可以成为使用杂环化合物的潜在候选者
聚合物胶束和胶囊是抗肿瘤药物载体的有希望的候选材料。生物降解性和广义的生物相容性是用于医疗应用的聚合物应始终具有的关键特征。精心设计的输送系统应确保化疗药物安全运输到目标区域,从而最大限度地减少全身暴露于这些药物,限制其毒性作用,最好是限制其对癌细胞的毒性作用。聚合物胶束通常专门用于封装不溶于水的药物。胶束结构通常是由各种两亲性嵌段共聚物在水环境中自组装而成的。更先进的方法用于形成具有液体核心和由熔融聚合物纳米或微粒制成的外壳的胶囊。这种涂层可以具有均质或异质成分。Janus 和斑块胶囊通常具有更实用和更先进的特性。虽然一些聚合物载体设计用于持续释放货物,但更复杂的方法涉及在选定的化学或物理刺激的影响下按需释放有效载荷。可用的聚合物种类繁多,并且由不同种类的单体形成共聚物的可能性非常广泛,这使得聚合物材料成为生产具有所需特性的药物输送系统的理想选择。本综述的目的是总结聚合物胶束作为细胞抑制药物载体的某些方面,并考虑到临床应用。另一个目标是展示基于刺激响应胶囊(其外壳由聚合物颗粒制成)创建替代系统的研究。
腹腔镜胆囊切除术(LC)是全球执行的最常见的lapa-Roscopic操作。囊性动脉和囊性管道的安全阻塞是预防并发症如出血和囊性管道泄漏等并发症的重要步骤,这可能会危及生命。腹腔镜胆囊切除术后囊性管道泄漏的发生率从0.5至3%不等,这在复杂的胆结石疾病中较高[1]。使用金属夹剪切动脉和囊性管是大多数腹腔镜外科医生实践的最优选的技术[1]。其他各种技术,例如用不可吸收和可吸收的锁定夹夹,缝合,钉子,固定,假定循环的应用,使用诸如Ligasure和谐波手术刀之类的能源的使用来关闭囊性管道[2-8]。不可吸收的聚合物夹(Hem-O-Lock,Weck Surgical Instruments,Teleflex Medical,Durham,NC,USA)已越来越重要,以确保囊性管道和疗效[9]。最近对1017个腹腔镜胆囊切除术的研究观察到使用锁定夹的囊性导管的泄漏率为零[10]。即使有一些研究将可吸收的锁定夹与LC中的其他方法进行了比较,但没有比较在电报中发表的下摆O-O-LOK和金属夹的随机试验。这项研究的目的是比较聚合物锁定夹[Hem-O-Lock]的安全性和短期结局和腹腔镜胆囊切除术中常规金属Ligaclips的安全性。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
Battelle 的 NVGD 平台有助于解决基因编辑疗法面临的最大障碍:递送。它使用的纳米粒子能够装载至少十倍于病毒载体 5 千碱基限制的负载。1 通过将强大而多功能的合成平台与体内跟踪和机器学习定向设计相结合,它解决了有效载荷挑战,解锁了数千个纳米粒子的高通量体外和体内并行筛选。2,3
摘要:粘合剂的设计在实现锂离子电池(LIBS)中持久的高功率并延长其整体寿命方面起着关键作用。本综述强调了在LIBS中使用时粘合剂必须具有的必不可少的特征,这些因素考虑了诸如电化学,热剂,热和色散稳定性,与电解质的兼容性,溶剂,机械性能和电导率的溶解度。在阳极材料的情况下,具有鲁棒机械性能和弹性的粘合剂对于维护电极完整性至关重要,尤其是在发生实质体积变化的材料中。对于阴极材料,粘合剂的选择取决于阴极材料的晶体结构。粘合剂设计中的其他重要考虑因素包括成本效益,附着力,加工性和环境友好性。结合低成本,环保和可生物降解的聚合物可以显着促进可持续的电池开发。本评论是理解高性能LIB粘合剂设计的先决条件的宝贵资源,并为各种电极配合的粘合剂选择提供了见解。本综述中阐明的发现和原理可以推断到其他高级电池系统,为开发以增强性能和可持续性为特征的下一代电池的课程图表。
图1研究设计。使用二糖(蔗糖和松糖)作为冷冻治疗剂研究了基于冷冻干燥的基于CRIPEC CROPEC的核心链接聚合物胶束(CCPM)。使用差异扫描色色(DSC)确定了含有CPC634(即临床阶段的Docetaxel-CCPM)水溶液的玻璃过渡温度(T g),以及冷冻保护剂,以优化温度设置,并避免在冷冻过程中进行蛋糕塌陷。使用温度传感器和Pirani仪表进行冷冻干燥的试验量表架冰冻干器,并确定了最佳设置。接下来,进行了对冷冻干燥的蛋糕和重构配方的系统分析,评估了诸如水分含量,重建时间,大小,PDI,传输电子显微镜(TEM),药物保留和释放动力学等关键质量属性。这些结果证实了生成冻干的CCPM公式进行临床评估和商业应用的可行性