paenibacillus polymyxa(P。polymyxa)是Paenibacillus属的成员,该属是一种棒状的,形成孢子的革兰氏阳性细菌。P. polymyxa是许多代谢活性物质的来源,包括多肽,挥发性有机化合物,植物激素,水解酶,外多糖(EPS)等。由于其产生的各种化合物,多型多霉菌症已被广泛研究为植物生长促进细菌,通过改善大气中N固定和增强磷溶解的N固定和磷酸化的溶解以及对土壤和phy to to hormone的生产的摄取,从而为植物提供了直接的好处。在多疟原虫的代谢产物中,EPS表现出许多活性,例如抗氧化,免疫调节,抗肿瘤等。EPS在食品,农业,环境保护中有各种应用。尤其是在可持续农业领域,多型多霉菌EPs可以用作生物膜来定居微生物,也可以充当根茎中植物根部的营养下沉。因此,本文将对来自P. Polymyxa的EPS的各个方面的进步进行全面综述,包括生产,提取,结构,生物合成,生物活性和应用等。它将为P. polymyxa EPS的未来研究提供一个方向。
MoBiTec GmbH pCasPP P. polymyxa 基因组编辑载体 本研究 pCasPP-pepFsg1 pepF 靶向敲除质粒不提供修复模板 本研究 pCasPP-pepFsg1-harms pepF 靶向敲除质粒提供修复模板 本研究 pCasPP-pepFsg2-harms pepF 靶向敲除质粒提供修复模板 本研究 pCasPP-pepF-harms 未靶向的 pCasPP 衍生物携带 pepF 同源区 本研究 pCasPP-pepCsg1-harms pepC 靶向敲除质粒提供修复模板 本研究 pCasPP-pepCsg2-harms pepC 靶向敲除质粒提供修复模板 本研究 pCasPP-pepJsg1-harms pepJ 靶向敲除质粒提供修复模板 本研究 pCasPP-pepJsg2-harms pepJ 靶向敲除质粒提供修复模板 本研究 pCasPP-ugdH1sg1-harms ugdH1 靶向敲除质粒提供修复模板 本研究 pCasPP-ugdH1sg2-harms ugdH1 靶向敲除质粒提供修复模板 本研究 pCasPP-manCsg1-harms manC 靶向敲除质粒提供修复模板 本研究 pCasPP-manCsg2-harms manC 靶向敲除质粒提供修复模板 本研究 pCasPP-clugBlock-harms 多重 pCasPP 变体,同时靶向两个不同位点,用于敲除 18 kb 片段;提供同源区域
此处介绍的菌株先前是在2016年从ADE土壤和两个不同的普通豆品种的实验中分离出来的,表现出对土壤传播病原体的抗氧体的抗性水平。该实验是在圣保罗大学农业核能中心进行的(22°42'27.60“ S,47°38'41.17” W)(4)。植物,并摇动根以去除松散的粘附土壤。用无菌刷子收集牢固的土壤,并被认为是根际土壤。用于微生物分离,将1 g根际土壤与9 ml盐水溶液(8.5 g L-1 NaCl)混合。串行稀释液(10 -1至10 -6),然后转移到国王中板上(5)。在25°C孵育48小时后,使用条纹板法分离了菌落。从分离株中提取总DNA。
氮固定微生物的应用在植物营养中表现出了益处。 div>这项研究旨在评估氮固定微生物对玉米培养的影响(Zea Mays L.)。 div>在实验中,使用了三个重复的随机完整块设计(DBCA)。 div>应用的处理为:T1 -Paenibacillus polymyxa 2 L Ha -1; T2 -P。polymyxa 3 L ha -1; T3 -P。Polymyxa 4 L Ha -1; T4- pegotobacter Chroococcum 2 L ha -1; T5 -a。 T6 -A。Chrococcum 4 L ha -1; T7 -P。Polymyxa + A. Chroococcum 2 L ha -1; T8 -P。polymyxa + A. Chroococcum 3 L ha -1; T9 -P。Polymyxa + A. Chroococcum 4 L ha -1和T10-对照(无应用)。 div>评估的变量为:植物高度,茎直径和插入蛋白的插入。 div>结果表明,在农作物的播种(DDS)后55天,高度为182.01 cm的玉米植物的良好生长以及使用T9 -P. polymyxa + A. A. A. ChroCocum治疗获得了20.14 mm茎的直径。 div>此外,对于同样的处理,COB的插入也为120 cm。 div>
图 5 . 基于 CRISPR-Cas9 的 pepC 和 sacB 基因多重基因组编辑。(A)以 mRFP 或 sfGFP 为目的基因的单基因缺失、多重缺失和多重整合的结合和编辑效率。Y 轴上提供结合效率(灰色)和编辑效率(橙色)。编辑效率条顶部的数字表示筛选的接合子总数。误差线表示标准偏差。在确定编辑效率之间的显著差异时,考虑 P 值 < 0.05(* p < 0.05;** p < 0.01)。与单基因缺失和多重缺失相比,多重 mRFP 整合具有显著差异,与单基因缺失相比,多重 sfGFP 整合也具有显著差异。 (B) P. polymyxa 突变体的显微图像,其中 sfGFP 取代了 pepC 和 sacB 基因。(左) 明场图像;(右) GFP 通道。(C) 筛选过程中获得的野生型和突变体的比例以饼状图形式提供。
微针以其无痛、无创、高效的药物输送方式引起了各医学领域越来越多的关注。然而,这些微针在不同表皮位置和环境中的实际应用仍然受到其低粘附性和较差的抗菌活性的限制。在这里,我们受到多粘芽孢杆菌的抗菌策略以及贻贝足丝和章鱼触手的粘附机制的启发,开发了具有多功能粘附和抗菌能力的分级微针。以聚多巴胺水凝胶为微针基底,每个微针周围环绕着一圈吸盘结构凹腔,所生成的微针可以很好地贴合皮肤;在干燥、潮湿和潮湿的环境中保持强粘附性;并在分成两部分后实现自我修复。此外,由于水凝胶尖端和聚多巴胺基质中都载有多粘菌素,微针在储存和使用过程中具有出色的抗常见细菌能力。我们已经证明这些微针不仅在应用于指关节时表现出优异的粘附性和理想的抗菌活性,而且在骨关节炎大鼠模型中药物缓释和治疗方面也表现出色。这些结果表明,仿生多功能微针将突破传统方法的限制,成为多功能透皮给药系统的理想候选者。
摘要:药用植物拥有各种具有巨大经济价值的内生微生物。因此,本研究的重点是分离和鉴定来自阿拉什(埃及)干旱地区的药用植物的细菌内生菌,及其作为增强番茄植物生长的生物调节剂的潜在作用。在这项研究中,八个内生细菌分离株显示了对测试真菌的直接广泛拮抗作用。根据拮抗活性,研究了这些分离株,以根据其16S rRNA基因序列进行识别,例如lysinibacillus fusiformis,pumilus pumilus,siamensis,siamensis,paenibacillus peoriae,paenib,paenib。polymyxa,铜绿假单胞菌A,Brevundimonas diminuta和Providencia vermicola。筛选菌株的各种植物生长促进(PGP)属性,包括吲哚-3-乙酸(IAA),氨,铁载体,磷酸酶,水解酶产生和磷酸盐溶解。孤立的细菌菌株具有可变的植物生长促进活性。评估了两种选择的内生细菌菌株,其生物控制潜力针对由氧气孢子菌和溶孢菌引起的番茄真菌根腐病疾病,以进一步评估其在温室条件下的PGP能力。在温室下,B。bumilusnaw4和铜绿假单胞菌A NAW6被证明有效地赋予在压力下以及在正常生长条件下的西红柿上带来积极的好处。
这项研究通过隔离,识别和表征与jollof水稻相关的微生物来评估jollof大米的微生物质量。从Obafemi Awolowo大学校园的不同地点收集了六个重复样本,尼日利亚,奥桑州,伊利夫斯夫。MACONKEY,营养和马铃薯葡萄糖琼脂用于分离和测定微生物负荷。进行了标准的形态和生化测试,以鉴定和表征分离株。总共分离了10种细菌和10种真菌物种。总细菌计数范围从3.6×10 3 cfu/g到1.54×10 5 cfu/g,而总真菌计数范围从1.04×10 4 SFU/g到3.0×10 5 sfu/g。假定的有机体(以这种情况为百分比)包括: saprophiticus葡萄球菌(20%),proteus dulgaris(10%),芽孢杆菌(10%),Proteus mirabilis(10%),小球菌(10%),地衣芽孢杆菌(10%),小芽孢杆菌(10%),小芽孢杆菌(10%),小芽孢杆菌(10%)(10%)(10%)(10%)(10%)(10%)(10%)(10%)尼日尔分离株和曲霉(30%),曲霉菌(30%)和曲霉菌(40%)用于真菌分离株。建议在食物准备过程中进行良好的个人卫生,适当的卫生习惯以及清洁的餐具,以避免食物中毒和变质。
化学氮肥可以维持作物生产力,但是化学氮肥过度使用会导致经济成本和环境污染。减少氮肥使用使用的一种方法是将氮酶生物合成途径转移到非乳状植物中。Fe蛋白是氮酶的两个结构成分。NIFB是一个关键的成熟酶,它催化了结合和减少n 2的氮酶Femo-Concactor的生物合成中的第一个投入步骤。NIFB,NIFH,NIFD和NIFK的表达对于产生能够固定大气N 2的植物至关重要。在这项研究中,Paenibacillu Polymyxa Wly78的四个基因(NIFB,NIFB,NIFD和NIFK)通过CRE/LOXP重组系统组装在植物表达vector PCAMBIA1301中,从而产生重组表达vector PCAM- bia1301301-nifbhdk。然后,使用tumefaciens介导的转化将表达载体中携带的四个NIF基因共同融入了高地棉R15。通过PCR和RT-PCR选择了T 3代的纯合转基因棉线B2,B5和B17。QRT-PCR显示,NIFB,NIFH,NIFD和NIFK在类似水平的转基因棉中共表达。Western印迹分析表明,NIFB,NIFH,NIFD和NIFK是在转基因棉中共同生产的。棉花中四种关键的NIF蛋白(NIFB,NIFH,NIFD和NIFK)的共表达是工程氮酶生物合成途径的重要一步。