在Pichia Pastoris中均拟定了Bjerkandera adusta菌株UAMH 8258 8258编码碳水化合物酯酶(指定为baces I)的新基因。该基因具有1410 bp的开放式阅读框,编码了470个氨基酸残基的多肽,前18个用作分泌信号肽。同源性和系统发育分析表明,Bacesi属于碳水化酯酶家族4。蛋白质和正常模式分析的三维模型揭示了可能与酯酶活性相关的活性位点的呼吸模式。此外,该酶的总体负静电电位表明它会降解中性底物,并且不会作用于诸如肽 - 甘氨酸或P-硝基苯酚衍生物等阴性底物上。酶在2-乙酸乙酸萘酯上显示出1.118 U mg 2 1蛋白的特异性活性。从静电势数据提出的P-亚硝基苯酚衍生物上未检测到活性。通过测量包括多种底物的乙酸释放,包括燕麦Xylan,虾壳壳蛋白,N-乙酰葡萄糖胺和天然底物,如甘蔗和糖甘蔗和草等天然底物,确认了重组Bacesi的脱乙酰化活性。这使得蛋白质对生物纤维生产行业的蛋白质非常有趣,从木质纤维素材料和壳蛋白产生壳聚糖。
儿童大部分药物为口服给药,但各年龄段儿童小肠药物代谢酶(DME)和药物转运体(DT)的蛋白质丰度信息仍不明确,这阻碍了儿童精准用药。为了探索 DME 和 DT 的年龄相关差异,收集了儿童和成人空肠和回肠手术剩余的肠组织,并通过靶向定量蛋白质组学分析了顶端钠 - 胆汁酸转运蛋白、乳腺癌耐药蛋白(BCRP)、单羧酸转运蛋白 1(MCT1)、多药耐药蛋白 1(MDR1)、多药耐药相关蛋白(MRP)2、MRP3、有机阴离子转运多肽 2B1、有机阳离子转运蛋白 1、肽转运蛋白 1(PEPT1)、CYP2C19、CYP3A4、CYP3A5、UDP 葡萄糖醛酸转移酶(UGT)1A1、UGT1A10 和 UGT2B7。分析了 58 名儿童(48 条回肠、10 条空肠,年龄范围:8 周至 17 岁)和 16 名成人(8 条回肠、8 条空肠)的样本。比较年龄组时,成人回肠中的 BCRP、MDR1、PEPT1 和 UGT1A1 丰度明显高于儿童回肠。空肠 BCRP、MRP2、UGT1A1 和 CYP3A4 丰度在
egovy(semaglutide)是历史上最成功的减肥药物。Novo Nordisk在2021年中期推出该药物时,引起了人们的影响。公民和名人争先恐后地获得治疗,引发了供应短缺以及社交媒体风暴,这证实了巨大的压抑需求。然而,Wegovy很快就会被Eli Lilly的糖尿病药物Mounjaro(Tirzepatide)淘汰,其最新的3期减肥数据于4月发布。两种药物都预计将产生数十亿美元的年销售额,并在与挫折相关的领域中重新兴奋,而不是成功。Wegovy,像Mounjaro一样,最初是一种抗糖尿病药物,减肥是一种受欢迎的增长。Wegovy模仿胰高血糖素样肽1(GLP-1)的作用,这是肠道L细胞释放的激素对食物的响应。GLP-1刺激胰腺细胞释放胰岛素并降低血糖,通过迷走神经向大脑发送饱腹感信号,并减慢胃排空,使人们感到饱满。Mounjaro于2022年5月批准用于Diabetes,激活了GLP-1受体和称为葡萄糖依赖性的不属性多肽(GIP)的第二次肠降血糖素(胰岛素刺激性肠激素)的受体。
pasireotide是一种用于治疗厄运病的生长抑素类似物,这是由过量生长激素引起的慢性疾病。尽管对pasireotide的治疗益处是对无法充分控制的肢端肥大的二线治疗方法,但主要关注的是其高血糖副作用。在这里,我们提供了有关如何选择适当的肢端肥大症患者进行pasireotide治疗的指导。我们总结了与pasireotide相关高血糖高风险的患者的基线特征,并建议基于风险验证的监测策略。对血糖水平(SMBG)的自我监测,禁食等离子体葡萄糖(FPG)的测量值,餐后等离子体葡萄糖(PPG)和常规的HBA1C测量值是我们建议的监测方法的基础。pasireotide诱导的高血糖的病理生理学涉及降6型激素GIP(葡萄糖依赖性胰岛素多肽)和GLP-1(甘氨酸样肽-1)的分泌降低。我们的专家建议通过建议在所有适当的患者中均可在所有适当的患者中,通过建议基于君主治疗的二肽基肽-4抑制剂(DPP-4I)(DPP-4I)(DPP-4I)(DPP-4I)(DPP-4I)(DPP-4I)(DPP-4I),以所有适当的患者在适当的患者中访问了替代人,我们的专家建议涉及基于肠血蛋白诱导的高血糖的特异性病理生理学(DPP-4I)和Glucagogon-1抑制剂(GLP-1 RA)。此外,我们强调了对肢端肥大,出色的糖尿病教育,营养和生活方式指导的充分控制的重要性,并建议在pasireotide下的高血糖患者管理中不确定性的情况下咨询专家糖尿病学家。
我们先前发现,通过麦芽糖加入A和A-葡萄糖苷酶抑制剂Miglitol(麦芽糖/Miglitol)通过glut2抑制剂抑制剂phloretin抑制小鼠中的A--葡萄糖苷酶抑制剂Miglitol(麦芽糖/Miglitol)。此外,麦芽糖/miglitol抑制了葡萄糖依赖性胰岛素多肽(GIP)通过涉及小型脂肪酸(SCFA)的机制隔离,该机制由微生物组产生。然而,未知是否通过调节SCFA来抑制GLP-1分泌。在这项研究中,我们检查了腓果素对体外和体内微生物组释放的影响。在大肠杆菌中,当用麦芽糖/米格列醇培养时,乙酸盐释放到培养基中。在小鼠中,菲洛莱汀抑制麦芽糖/米格列醇诱导的SCFA在门静脉中增加。此外,与二氯化津在小鼠中共同施用时,α-甲基-D-葡萄糖(MDG)是GLUT2的较差的GLP-1分泌,这显着增加了GLP-1分泌,这表明GLUT2对于葡萄糖/菲洛兹蛋白诱导的GLP-1分泌不是必不可少的。MDG提高了门户网站SCFA水平,从而增加了GLP-1分泌并抑制小鼠的GIP分泌,这表明MDG是可代谢的,而不是哺乳动物,而是微生物群。总而言之,建议通过抑制微生物组产生的SCFA抑制麦芽糖/米格列醇诱导的GLP-1分泌。©2022 Elsevier Inc.保留所有权利。
摘要:已被广泛接受的是,诸如HCl之类的酸性物种抑制了N-羧基酸酐(NCA)的聚合过程,必须将其去除以保证成功合成多肽。在这里,我们表明有机酸对NCA聚合的影响取决于其在二氯甲烷中的PKA值。虽然较强的酸(例如三氟乙酸)完全阻止了链的传播,但较弱的酸(例如乙酸)会加速聚合速率。酸的添加不仅质子化了传播的氨基群,还激活了NCA单体,其平衡确定了催化作用或抑制作用。此外,酸催化的聚合表现出与常规合作共价聚合物不同的一阶段动力学,即使加速速率也可以很好地控制分子量。PKA依赖性促使我们按需将抑制酸 - 将抑制作用转化为催化剂,从而促进了来自非纯化NCA单体的受控聚合。这项工作强调了通过改变反应条件来改变对催化剂/抑制剂的常规理解的可能性,这不仅阐明了新催化剂的设计,而且还提供了一种实用策略,以有效和控制的方式准备多肽材料。
缩写:AASLD,美国肝病研究协会;ALT,丙氨酸氨基转移酶;ASO,反义寡核苷酸;CAM,衣壳组装调节剂;cccDNA,共价闭合环状DNA;ChAdOx1-HBV/MVA-HBV,编码多种 HBV 抗原的黑猩猩腺病毒和改良痘苗安卡拉病毒载体;CHB,慢性乙型肝炎感染;EASL,欧洲肝脏研究协会;ETV,恩替卡韦;GalNac 共轭 LNA SSO,N-乙酰半乳糖胺共轭锁核酸单链寡核苷酸;HBcrAg,乙型肝炎核心相关抗原;HBeAg,乙型肝炎 BE 抗原;HBsAg,乙型肝炎表面抗原;HBV,乙型肝炎病毒;HCC,肝细胞癌;IFN,干扰素; MDSC,髓系抑制细胞;NA,核苷(酸)类似物;NAP,核酸聚合物;NK 细胞,自然杀伤细胞;NTCP,牛磺胆酸钠共转运多肽;PD-1,程序性死亡受体-1;PDL-1,程序性细胞死亡配体-1;pegIFN α,聚乙二醇化干扰素α;pgRNA,前基因组RNA;siRNA,小干扰RNA;STOP,S-抗原运输抑制寡核苷酸聚合物;TAF,替诺福韦艾拉酚胺;TCR,T 细胞受体;TDF,富马酸替诺福韦二吡呋酯;TGF,转化生长因子;TLR,Toll 样受体。
摘要:过去四年中,独特的跨膜 (TM) 蛋白质结构的数量翻了一番,这可以归因于低温电子显微镜的革命。此外,AlphaFold2 (AF2) 还提供了大量高质量的预测结构。但是,如果研究的对象是特定的蛋白质家族,那么尽管存在通用和蛋白质域特定的数据库,收集该家族成员的结构仍然极具挑战性。在这里,我们证明了这一点,并评估了通过 ABC 蛋白质超家族自动收集和呈现蛋白质结构的适用性和可用性。我们的流程使用 PFAM 搜索识别和分类跨膜 ABC 蛋白质结构,并旨在根据特殊几何测量 conftors 确定它们的构象状态。由于 AlphaFold 数据库仅包含单个多肽链的结构预测,我们对作为二聚体发挥作用的人类 ABC 半转运蛋白进行了 AF2-Multimer 预测。我们的 AF2 预测警告称,有关相互作用伙伴的一些生化数据的解释可能存在歧义,需要进一步进行实验和实验结构确定。我们通过网络应用程序提供了我们预测的 ABC 蛋白质结构,并加入了 3D-Beacons 网络,通过 PDBe-KB 等平台覆盖更广泛的科学界。
缩写:α-SMA,α-平滑肌肌动蛋白;ALP,碱性磷酸酶;ALT,丙氨酸氨基转移酶;ASBT,顶端钠依赖性胆汁酸转运蛋白;ASBTi,ASBT 抑制剂;ATCC,美国典型培养物保藏中心;AUC inf,从给药时间到最后可测量浓度的 AUC 并外推至无穷大;BAs,胆汁酸;BDL,胆管结扎;C4,7α-羟基-4-胆甾烯-3-酮;CA,胆酸;CDCA,鹅去氧胆酸;CK7,细胞角蛋白-7;CMC,羧甲基纤维素;Cyp7a1,细胞色素 P450 家族 7 亚家族 A 成员 1;d,天;DCA,脱氧胆酸;DEGs,差异表达基因;GCDCA,甘氨鹅去氧胆酸; GO,基因本体;H&E,苏木精-伊红;IC50,半数最大抑制浓度;LCA,石胆酸;LC-MS/MS,液相色谱串联质谱法;MCA,鼠胆酸;MCP-1,单核细胞趋化蛋白-1;MDR3,多药耐药蛋白3;基质金属蛋白酶7 (MMP-7),基质金属蛋白酶7;NRC,正常大鼠胆管细胞;NTCP,Na+-牛磺胆酸共转运多肽;OST α /OST β,有机溶质转运蛋白α/β;QWBA,定量全身放射自显影;RNAseq,RNA测序;RT-qPCR,定量实时PCR;SAD,单次递增剂量;t 1/2,终末半衰期;UDCA,熊去氧胆酸;WT,野生型。
缩写:α-SMA,α-平滑肌肌动蛋白;ALP,碱性磷酸酶;ALT,丙氨酸氨基转移酶;ASBT,顶端钠依赖性胆汁酸转运蛋白;ASBTi,ASBT 抑制剂;ATCC,美国典型培养物保藏中心;AUC inf,从给药时间到最后可测量浓度的 AUC 并外推至无穷大;BAs,胆汁酸;BDL,胆管结扎;C4,7α-羟基-4-胆甾烯-3-酮;CA,胆酸;CDCA,鹅去氧胆酸;CK7,细胞角蛋白-7;CMC,羧甲基纤维素;Cyp7a1,细胞色素 P450 家族 7 亚家族 A 成员 1;d,天;DCA,脱氧胆酸;DEGs,差异表达基因;GCDCA,甘氨鹅去氧胆酸; GO,基因本体;H&E,苏木精-伊红;IC50,半数最大抑制浓度;LCA,石胆酸;LC-MS/MS,液相色谱串联质谱法;MCA,鼠胆酸;MCP-1,单核细胞趋化蛋白-1;MDR3,多药耐药蛋白3;基质金属蛋白酶7 (MMP-7),基质金属蛋白酶7;NRC,正常大鼠胆管细胞;NTCP,Na+-牛磺胆酸共转运多肽;OST α /OST β,有机溶质转运蛋白α/β;QWBA,定量全身放射自显影;RNAseq,RNA测序;RT-qPCR,定量实时PCR;SAD,单次递增剂量;t 1/2,终末半衰期;UDCA,熊去氧胆酸;WT,野生型。
