schizosaccharomyces pombe热敏突变体需要渗透稳定剂在非腐败温度下生存和生长。突变体在遗传和生化上都是表征的。在所有这些中,表型以孟德尔的方式隔离为单个基因,编码为隐性特征。通过互补分析定义了十四个基因座。细胞壁组成的研究表明,在37°C下生长时,细胞壁的量减少了三种菌株(JCR1,JCR5和JCR10)的I-Glucan。Galactomannan在另外两个人中减少了。菌株JCR1和JCR5分别具有突变等位基因CWGL-L和CWG2-1的菌株。CWGL基因座映射在ADE5标记左侧18.06 Centimorgans(CM)染色体III的右臂上; CWG2位于染色体I的左臂上,距离AROS标记34.6厘米。(1-3)0-D-Glucan合酶来自CWGL-L和CWG2-1突变菌株在37°C下生长的CWG2-1突变菌株与野生型菌株相比,在37°C下生长的菌株被缩小。但是,GTP的Km值和激活与野生型值相似。突变合成酶在热稳定性方面的表现像野生型酶。对源自同一四四形的子孢子的培养物中的圆形,裂解行为和低(1-3)0-D-葡聚糖合酶活性的分析显示所有这些特征的cosegregation。抗真菌剂乳头蛋白B和丙氨酸蛋白A对野生型和CWG2-1突变菌株的酶活性具有相似的影响,而在37°C下生长时,CWGL-1突变体具有更耐抑制剂的0-D-glucan 0-D-glucan Stantase。(1-3)01-D-葡聚糖合酶分解为可溶性和颗粒分数,随后的重构表明,CWGL-1突变体在酶活性的颗粒分数中受到影响,而CWG2-1在可溶性组件中受到影响。可以得出结论,CWGL+和CWG2+基因与(1-3)0i-D-葡聚糖生物合成有关。
摘要:本研究研究了两株粟酒裂殖酵母菌株(NCAIM Y01474 T 和 SBPS)和两株日本裂殖酵母菌株(DBVPG 6274 T、M23B)发酵苹果汁的能力,并与酿酒酵母 EC1118 进行了比较,以了解它们对苹果酒挥发性化合物的影响。裂殖酵母的乙醇耐受性和脱酸能力使其成为常用酿酒酵母发酵剂的潜在替代品。尽管时间过程不同(10-30 天),但所有菌株均可完成发酵过程,裂殖酵母菌株降低了苹果汁中的苹果酸浓度。结果表明,每种酵母对苹果酒的挥发性成分都有不同的影响,使用主成分分析可以分离最终产品。苹果酒的挥发性成分在醇、酯和脂肪酸的浓度方面表现出显著差异。具体来说,絮凝剂菌株 S. japonicus M23B 增加了乙酸乙酯(315.44 ± 73.07 mg/L)、乙酸异戊酯(5.99 ± 0.13 mg/L)和异戊醇(24.77 ± 15.19 mg/L)的含量,而 DBVPG 6274 T 使苯乙醇和甲硫醇的含量分别增加到 6.19 ± 0.51 mg/L 和 3.72 ± 0.71 mg/L。在 S. cerevisiae EC1118 发酵的苹果酒中检测到大量萜烯和乙酯(例如辛酸乙酯)的产生。这项研究首次证明了 S. japonicus 在苹果酒酿造中的应用可能性,可以为产品提供独特的芳香味”。
了解控制真核细胞行为的复杂机制和过程是现代生物学的基本目标。schizosaccharomyces pombe(S。pombe)是对这种追求至关重要的模型生物之一。利用S. pombe的研究在阐明细胞周期控制的基本原理(Nurse 2020),细胞分裂(Mangione and Gould 2019),染色体生物学(Sato等人(Sato等)中起着关键作用(Sato等人。2021),表观遗传遗传(Grewal 2023),端粒生物学(Kanoh 2023)和许多其他核心保存的细胞过程。最近,衰老(Ohtsuka等人2023),自噬(Alao等人2023),RNA ProseSing(Larochelle等人 2017),转录后调节(Hernández-Elvira和Sunnerhagen 2022),自噬(XU和DU 2022)和线粒体过程(Dinh and Bonnefoy 2023)已成为更多焦点的领域。 Pombase(https://www.pombase.org)是S. Pombe的权威模型有机体数据库(MOD),是一个支持裂变酵母研究人员和更广泛的科学界的全面知识基础(Lock等人(Lock等) 2020; Harris等。 2022; Toda等。 2023)。 通过详细的策展,标准化和从数千个聚焦典范中得出的信息的整合,它为基因和蛋白质水平的分子数据提供了一个存储库。 Pombase的目标是成为一个完全可访问的,可访问的,可互操作的和可重复使用的(公平) - 集合资源(Wilkinson等人。 2016)。2023),RNA ProseSing(Larochelle等人2017),转录后调节(Hernández-Elvira和Sunnerhagen 2022),自噬(XU和DU 2022)和线粒体过程(Dinh and Bonnefoy 2023)已成为更多焦点的领域。Pombase(https://www.pombase.org)是S. Pombe的权威模型有机体数据库(MOD),是一个支持裂变酵母研究人员和更广泛的科学界的全面知识基础(Lock等人(Lock等)2020; Harris等。2022; Toda等。2023)。通过详细的策展,标准化和从数千个聚焦典范中得出的信息的整合,它为基因和蛋白质水平的分子数据提供了一个存储库。Pombase的目标是成为一个完全可访问的,可访问的,可互操作的和可重复使用的(公平) - 集合资源(Wilkinson等人。2016)。除了复杂的查询工具外,Pombase还提供了跨多个分类轴的生物和域级概述,包括功能,过程,位置,表型,人类疾病基因直系同源物,策展和特征性进展。
摘要 CRISPR/Cas9 系统可实现无疤痕、无标记的基因组编辑。目前,用于裂殖酵母 Schizosaccharomyces pombe 的 CRISPR/Cas9 系统依赖于繁琐且耗时的克隆程序,将特定的 sgRNA 靶序列引入 Cas9 表达质粒中。此外,据报道,当从强 adh1 启动子持续过表达 Cas9 核酸内切酶时,它会对裂殖酵母产生毒性。为了克服这些问题,我们开发了一种改进的系统 SpEDIT,它使用从中等强度 adh15 启动子表达的针对 S. pombe 进行密码子优化的合成 Cas9 序列。SpEDIT 系统表现出灵活的模块化设计,其中 sgRNA 与自切割丁型肝炎病毒 (HDV) 核酶的 3' 端融合,从而允许 tRNA 基因序列中的 RNA 聚合酶 III 驱动 sgRNA 盒的表达。最后,在 GFP 占位符两侧加入 Bsa I 型 IIS 限制酶位点,可实现 Golden Gate 介导的一步式 GFP 替换和合成的 sgRNA 表达。SpEDIT 系统通过转化异步培养细胞,在 ade6 + 或 ura4 + 基因中生成靶点突变体,可实现 100% 的诱变效率。SpEDIT 还允许以最小的努力获得插入、标记和删除事件。还可以轻松实现两个独立非同源基因位点的同时编辑。重要的是,与目前可用的 S. pombe 编辑系统相比,SpEDIT 系统显示出更低的毒性。因此,SpEDIT 提供了一种有效且用户友好的 CRISPR/Cas9 程序,可显著改善裂殖酵母的基因组编辑工具箱。
摘要 CRISPR/Cas9 系统可实现无疤痕、无标记的基因组编辑。目前,用于裂殖酵母 Schizosaccharomyces pombe 的 CRISPR/Cas9 系统依赖于繁琐且耗时的克隆程序,将特定的 sgRNA 靶序列引入 Cas9 表达质粒中。此外,据报道,当从强 adh1 启动子持续过表达 Cas9 核酸内切酶时,它会对裂殖酵母产生毒性。为了克服这些问题,我们开发了一种改进的系统 SpEDIT,它使用从中等强度 adh15 启动子表达的针对 S. pombe 进行密码子优化的合成 Cas9 序列。SpEDIT 系统表现出灵活的模块化设计,其中 sgRNA 与自切割丁型肝炎病毒 (HDV) 核酶的 3' 端融合,从而允许 tRNA 基因序列中的 RNA 聚合酶 III 驱动 sgRNA 盒的表达。最后,在 GFP 占位符两侧加入 Bsa I 型 IIS 限制酶位点,可实现 Golden Gate 介导的一步式 GFP 替换和合成的 sgRNA 表达。SpEDIT 系统通过转化异步培养细胞,在 ade6 + 或 ura4 + 基因中生成靶点突变体,可实现 100% 的诱变效率。SpEDIT 还允许以最小的努力获得插入、标记和删除事件。还可以轻松实现两个独立非同源基因位点的同时编辑。重要的是,与目前可用的 S. pombe 编辑系统相比,SpEDIT 系统显示出更低的毒性。因此,SpEDIT 提供了一种有效且用户友好的 CRISPR/Cas9 程序,可显著改善裂殖酵母的基因组编辑工具箱。
从酵母到哺乳动物,真核生物基因组可以根据发育或环境状态进行广泛转录。据估计,大多数裂殖酵母 (S. pombe) 和人类基因组都具有转录能力 [1,2]。尽管蛋白质编码基因在所有转录基因组单位中只占极小部分,但它们在历史上获得了最多的研究关注。然而,鉴于新一代测序和基因组编辑方法的最新进展,人们越来越多地参与阐明编码调控 RNA 的基因的功能相关性。这些包括非编码 RNA 和具有编码和非编码双重属性的双功能 RNA。非编码基因的转录产物可大致分为小分子非编码 RNA 或长分子非编码 RNA (lncRNA)。小的非编码 RNA 长度小于 200 个核苷酸,主要包括微小 RNA (miRNA)、短干扰 RNA (siRNA)、tRNA 衍生的小 RNA (tsRNA) 和 piwi 相互作用 RNA (piRNA)。它们在转录组和染色质调控中的作用已在其他地方进行了广泛综述,本文将不再赘述 [3–8]。长 RNA(长度 > 200 个核苷酸)称为长的非编码 RNA (lncRNA),据信不会翻译成蛋白质。与信使 RNA (mRNA) 相比,许多 lncRNA 的序列保守性较差,稳定性较差,主要存在于细胞核内。在酵母、植物和动物中,编码 lncRNA 的基因数量远远超过编码 mRNA 的基因数量 [9–12],这表明真核生物中存在大量无功能转录噪音,或者仍有许多功能性 RNA 有待鉴定。然而,有人争论说,一些注释的 lncRNA 可能被错误注释,并且可以翻译 [13–15]。这种想法得到了核糖体
为继续推进这一目标,该部将继续致力于实现政府在 2025 愿景中提出的五年发展计划第三阶段 (FYDP III) 目标。为响应这一愿景,坦桑尼亚联合共和国总统约翰·庞贝·马古富力博士于 2020 年 11 月 13 日在第十二届议会会议开幕式上强调,需要到 2025 年将宽带覆盖率扩大到 80%。2020 年 12 月 5 日,总统宣布成立新的通信和信息技术部,其职责是推动坦桑尼亚推动第四次工业革命 (4IR),即通常所说的数字经济。这将通过为社区、企业、政策制定者和各行各业的公民提供现有机会,利用技术促进社会经济增长和发展来实现。
图 1 人类与非人类物种之间共享的基因。系统发育树标注了每个物种中具有 1:1 直系同源物的人类基因百分比(以数字和每个圆圈的填充比例显示)。与人类共享的 1:1 直系同源物的绝对数量绘制为每个圆圈的颜色。使用 orthogene R 包构建。92 关键词:Anolis carolinensis,绿变色蜥;Bos taurus,牛;Caenorhabditis elegans,蛔虫;Canis lupus familiaris,狗;Danio rerio,斑马鱼;Drosophila melanogaster,果蝇;Equus caballus,马;Felis catus,猫;Gallus gallus,鸡;Homo sapiens,人类;Macaca mulatta,恒河猴;Monodelphis domestica,灰色短尾负鼠;小家鼠 (Mus musculus),家鼠;鸭嘴兽 (Ornithorhynchus anatinus),鸭嘴兽;黑猩猩 (Pan troglodytes),黑猩猩;褐家鼠 (Rattus norvegicus),褐家鼠;酿酒酵母 (Saccharomyces cerevisiae),面包酵母;粟酒裂殖酵母 (Schizosaccharomyces pombe),裂殖酵母;野猪 (Sus scrofa),猪;热带爪蟾 (Xenopustropicalis),西方爪蟾。
20世纪的许多主要生物学发现仅使用六种物种进行:大肠杆菌细菌,酿酒酵母和schizosacachomyces pombe酵母,caenorhabdision秀素秀丽隐杆线虫,秀丽隐杆线虫,果蝇黑色素肉眼素的肉质片和musculus小鼠。我们对细胞分裂周期,胚胎发育,生物钟和代谢的分子理解均通过使用这些物种的遗传分析获得。然而,“大6”并未以遗传模型生物(以下简称“模型生物”)开始,那么它们如何成熟到如此强大的系统中?首先,这些模型生物是丰富的人类分子:它们是我们肠道中的细菌,啤酒和面包中的酵母,堆肥堆中的线虫,厨房中的苍蝇和墙上的小鼠。因此,它们在实验室中便宜,容易,迅速繁殖,此外也可以接受遗传分析。我们应该如何以及为什么要在此阵容中添加其他物种?我们认为,专业物种将在生物学的重要领域揭示新的秘密,并且随着现代技术创新(例如下一代测序和CRISPR-CAS9基因组编辑)的现代技术,现在已经成熟了,超越了6大>在这篇评论中,我们利用自己在伊德斯埃及埃及蚊子上的经验为达到这一目标的10步途径,我们在十年内将其建立在神经生物学模型生物体中。对这种致命疾病载体的生物学的见解要求我们与蚊子本身合作,而不是在其他物种中对其生物学进行建模。
领域主题:生物科学和生物技术 姓名:CAPELLA、MATÍAS 参考号:RYC2023-044783-I 电子邮箱:mcapella@ial.unl.edu.ar 标题:分析调节重复序列以维持植物基因组稳定性的因素 记忆摘要:我的科学之旅始于阿根廷圣菲的 Instituto de Agrobiotecnología del Litoral,指导老师是 Raquel Chan 教授。在完成硕士和博士论文后,我的研究主要集中在了解特定植物 HD-Zip 转录因子在拟南芥和向日葵中的作用。值得注意的是,我发现了对转录活性很重要的关键蛋白质区域(Capella 等人,2014 Plant Cell Rep)。此外,我的研究还强调了 AtHB1 在调节生长相关蛋白表达和促进下胚轴细胞伸长方面的作用(Capella 等人,2015 New Phytol)。在此期间,我还参与了 3 篇研究论文(2 篇 BMC Plant Biol 和 1 篇 J Exp Bot)和 2 部章节书籍(1 部作为第一作者)。在生物化学与生物科学学院期间,我协助分子和细胞生物学系完成了几项任务。丰富的经验使我掌握了一套涵盖生化、分子和生理方法的多功能技能。这些技能最初专注于植物生物学,现已在不同的科学领域展现出其价值。在转向分子细胞生物学博士后研究后,我加入了慕尼黑马克斯普朗克生物化学研究所 Stefan Jentsch 教授的实验室。在那里,我提高了在酵母遗传学、基于质谱的蛋白质组学和蛋白质生物化学方面的技能。我研究了双链断裂后重复序列的核膜监视和染色质动力学,这些项目最终以第一作者和通讯作者的身份发表了两篇论文(Capella 等人,2020 年 J Cell Sci;Capella 等人,2021 年 Nature Commun)。在 Jentsch 教授去世后,我加入了慕尼黑生物医学中心 Sigurd Braun 博士的实验室。这一阶段让我能够将我的工作扩展到模型生物裂殖酵母,参与高通量遗传筛选,并获得 RNA 测序技术的专业知识。通过我在 Braun 实验室的博士后研究,我参与了一个项目,我们展示了 Lem2 在 RNA 监视中的作用(Martin Caballero 等人,2022 年 Nat Struc Mol Biol)。此外,我还参与并协助发表了 2 篇研究论文(1 篇 EMBO Rep 和 1 篇 Microbial Cell)、2 篇 News & Views(1 篇 Nat Struc Mol Biol 和 1 篇 Dev Cell,均为第一作者),并与奥地利的 Frederic Berger 教授合作通过合成生物学探索植物组蛋白变体(1 篇 Curr Biol 和 1 篇 PLoS Genet)。此外,我们正处于完成另一份手稿的最后阶段(Muhammad 等人,正在准备中)。尽管身在国外,我与我在阿根廷的前导师合作,并继续指导一名硕士生,最终以共同第一作者的身份发表了 2 篇论文(1 篇 Plant Physiol 和 1 篇 J Exp Bot),以通讯作者的身份发表了 1 篇论文(1 篇 Plant Cell Physiol),以第三作者的身份发表了 1 篇论文(1 篇 Plant Sci)。回到阿根廷后,我致力于建立自己的研究小组,重点研究确定调节植物重复序列稳定性的分子因素——这是一个尚未被探索的领域。为了实现这一目标,我目前正在指导两名博士生和一名研究生。最后,我最近成功获得了两笔资助,以资助我的独立项目,这是我研究历程中的一个关键时刻。