电压门控钾通道是导致细胞膜复制中钾外排出的钾通道的广泛分布的亚组,因此有助于作用电位的潜伏和传播。由于它们是突触传播的因果,因此对这些通道的结构的改变会导致各种神经系统和精神病。在大脑中的许多神经元上发现了电压门控钾通道的KV3亚家族,包括抑制性神经元,在这些神经元中有助于快速发射。这些中间神经元的发射能力的变化会导致抑制性和兴奋性神经传递的失衡。迄今为止,我们对兴奋性和抑制投入不平衡的机制几乎没有理解。这种不平衡与神经系统和神经精神疾病的认知缺陷有关,这些缺陷目前难以治疗。在这篇综述中,我们对支持以下假设的证据进行了整理,即电压门控钾通道,特别是KV3亚科是许多神经系统和精神疾病的核心,因此可以被视为有效的药物靶标。此处回顾的研究提供的集体证据表明,KV3通道可能适合调节这些通道活性的新型治疗方法,并有改善的患者预后。
维生素C或抗坏血酸是各种资源中必不可少的抗氧化剂,例如药物片,水果和蔬菜。人体不能单独合成它。这项研究旨在测量29种常见的压缩片剂,泡腾片,水果和Khat(Catha Edulis)叶片中的维生素C含量,这些含量是在也门本地市场中发现的。这项研究使用氧化钾含钾的氧化还原滴定方法。这些结果揭示了确认的欧美标准,并且在商业片剂中测得的维生素C含量之间没有显着差异(P <0.05),产品标签上所述的数量,以及Guava中水果中最高的维生素C含量(111.21 mg/100 g)(111.21 mg/100 g)(111.21 mg/100 g)(111.21 mg/100 g),而维生素C的含量最低,维生素C含量最低(8.7 g)(8.7 g)。
如果您的肝功能严重受损, 如果您患有糖尿病或肾功能受损,并且正在接受含有阿利吉仑的降压药治疗。 警告和注意事项 服用 Nusar 50 片剂前,请咨询您的医生、药剂师或护士。如果您认为自己怀孕了(或可能怀孕),您必须告诉您的医生。不建议在怀孕初期服用 Nusar 50,如果您怀孕超过 3 个月,则不得服用,因为如果在此阶段使用,可能会对您的婴儿造成严重伤害(请参阅怀孕部分)。在服用 Nusar 50 之前,务必告知您的医生: 如果您有血管性水肿病史(面部、嘴唇、喉咙和/或舌头肿胀)(另请参阅第 4 节“可能的副作用”), 如果您患有过度呕吐或腹泻,导致体内液体和/或盐分极度流失, 如果您服用利尿剂(增加通过肾脏排出的水量的药物)或正在进行饮食盐限制,导致体内液体和盐分极度流失(请参阅第 3 节“特殊患者群体的剂量”), 如果您已知通向肾脏的血管变窄或堵塞,或者您最近接受了肾脏移植, 如果您的肝功能受损(请参阅第 2 节“不要服用 Nusar 50”和第 3 节“特殊患者群体的剂量”), 如果您患有心力衰竭,无论是否伴有肾功能不全,或者同时发生严重危及生命的心律失常。同时使用 β 受体阻滞剂治疗时需特别小心, 如果您有心脏瓣膜或心肌问题, 如果您患有冠心病(由心脏血管血流减少引起)或脑血管病(由脑部血液循环减少引起), 如果您患有原发性醛固酮增多症(一种与肾上腺激素醛固酮分泌增加有关的综合征,由腺体内部异常引起), 如果您正在服用以下任何一种治疗高血压的药物:o 血管紧张素转换酶 (ACE) 抑制剂(例如依那普利、赖诺普利、雷米普利),特别是如果您有糖尿病相关的肾脏问题 o 阿利吉仑 您的医生可能会定期检查您的肾功能、血压和血液中的电解质(例如钾)含量。 另请参阅“不要服用 Nusar 50”标题下的信息。 如果您正在服用其他可能增加血清钾的药物(请参阅第 2 节“其他药物和 Nusar 50”)。 儿童和青少年 氯沙坦已在儿童中进行研究。有关更多信息,请咨询您的医生。不建议患有肾脏或肝脏问题的儿童使用氯沙坦,因为这些患者群体的数据有限。不建议 6 岁以下儿童使用氯沙坦,因为尚未证明该药物对这个年龄段的人有效。其他药物和 Nusar 50
电压门控离子通道对于膜电位维护,体内平衡,电信号产生和控制Ca 2+流过膜至关重要。在所有离子通道中,神经元兴奋性的关键调节剂是最大的K +通道家族的电压门控钾通道(K V)。由于大脑衰老的ROS高水平,K +通道可能受氧化剂的影响,并且是衰老和神经变性过程的关键。本综述提供了有关研究最多的神经退行性疾病中的通道病的新见解,例如阿尔茨海默氏病,帕金森氏病,亨廷顿疾病或脊椎脑性共济失调。这些神经退行性疾病中的主要受影响的K V通道是K V 1,K V 2.1,K V 3,K V 4和K V 7。此外,为了防止或修复这些神经退行性疾病的发展,已经提出了先前的K V通道调节剂作为治疗靶标。
作为1,2,4-苯甲二嗪-1,1-二氧化物的衍生物,噻嗪类药物更准确地分类为苯甲二氮嗪。在不同化合物之间存在取代和杂环环的变化,但它们都共享一个未取代的磺酰胺基,类似于碳酸酐酶抑制剂。尽管它们保留了抑制碳酸酐酶的能力,但其利尿作用并不仅仅依赖于这种活性。在生理pH时,噻嗪类充当有机阴离子,由于其高蛋白结合和有限的肾小球过滤,因此必须通过肾脏有机阴离子转运蛋白通过肾脏有机阴离子转运蛋白进行主动分泌。尿酸与噻嗪类药物竞争为近端小管的分泌,可能导致高尿酸血症并引发易感个体的痛风。
背景:白内障是可治疗失明的主要原因,占病例的80%,是由涉及各种因素的复杂病因引起的。糖尿病显着加快了白内障的发育,其与电解质失衡的潜在相互作用进一步增强了我们的理解。的目的和目标:本研究旨在探索血清和水性幽默的电解质浓度,特别是钠(na⁺)和钾(K⁺),及其对糖尿病患者白毒发病机理的潜在影响。材料和方法:一项全面的观察性研究涵盖了100例队列,同样分为糖尿病和非糖尿病性白内障患者。性别分布和年龄组,重点是40岁及以上的个体。血清钠(Na⁺)和钾(K⁺)水平与参考范围进行了比较,统计分析包括一个未配对的学生的t检验和社会科学20软件的统计软件包。结果:在糖尿病性白内障患者中,血清钠水平显着升高(149.2147±2.71 meq/L),与非糖尿病对应物相比(145.04±2.25 meq/l),表现出很高的显着性(p <0.001)。同样,与非糖尿病患者相比,糖尿病患者的血清钾(4.1919±0.5011)的边缘增加(4.1264±0.5124),其PVALUE不显着(P <0.5)。水性幽默分析表明,糖尿病性白内障病例中钠和钾水平的大幅上升,表现出很高的显着性(p <0.001)。结论:本研究提供了令人信服的证据,表明糖尿病和非糖尿病性白内障患者之间不同的电解质谱,尤其是钠和钾。糖尿病患者中血清和幽默水平升高表明在白内障中具有潜在的促进作用。糖尿病患者中血清和幽默水平升高表明在白内障中具有潜在的促进作用。
co 2气液吸收是具有碳捕获和存储(BECC)的生物能源最相关的技术之一。目前建议在压力/温度旋转过程中碳酸钾作为最可行的BECC过程,在该过程中,它缓冲了CO 2与羟基离子的吸收反应。在整个过程中,溶剂加载在进入吸收器之前将吸收器进入高度之前从低点变化。对于工艺设备的尺寸,在任何情况下都必须知道吸收动力学。为了研究动力学参数,开发了测量设置,并在50至75°C之间测量了溶剂载荷为0.3至0.7的CO 2吸收液的溶剂溶液。通过将CO 2吸收到纯水中来测量传质系数。反应速率常数K OH的获得值显示在增加溶剂载荷时激活能的减少。通常,溶剂加载的增加会导致K OH的值增加。但是,由于较高的负载下pH值较低,可观察到的吸收率降低。一种克服碳酸钾的动力学限制的方法是吸收启动子的利用。在吸收过程中合成并测试了模仿化合物锌(II)循环的碳赤铁蛋白酶。在研究条件下,未发现Zn(II) - 循环的促进作用。
GREEN SYNTHESIS OF ECO-FRIENDLY POTASSIUM NANOPARTICLES AND ITS APPLICATION IN AMARATHUS VIRIDIS, SOLANUM LYCOPERSOCUM AND HIBISCUS SABDARIFFA PLANTS Nathan D. Aliyu *1 Gideon Wyasu 1 , Bako Myek 1 and Jamila B. Yakasai 2 1 Department of Pure and Applied Chemistry, Faculty of Physical Sciences, Kaduna State University (KASU), Tafawa Balewa Way, PMB 2339, Kaduna, Nigeria 2 National Water Resources Institute, Mando – Kaduna *Corresponding Author Email Address: nathandikko2@gmail.com ABSTRACT Potassium Chloride and Polyalthia longifolia leaves extract were used for the synthesis of Eco-friendly Potassium Nanoparticles for application in Amarathus viridis, Solanum Lycopersocum和芙蓉Sabdariffa。通过扫描电子显微镜 - 能量色散X射线(SEM-EDX)和傅立叶变换红外(FTIR)来表征合成的纳米颗粒。SEM揭示了200nm的尺寸范围,并具有近乎球形的纳米颗粒。EDX揭示了19%钾,4.46%氯,33.04%碳,28.31%氧和14.30%铁的元素组成。ftir在3235.3cm-1、2109.7cm-1、1640.0cm-1和1069.7cm-1时显示了四个独特的,对于多硫杆菌的钾颗粒(PL-KNP)。确定并与受控植物进行比较时,所有叶子的叶子都显着增加:Amaranthus viridis叶片记录的最高增长率为56.81%,索拉纳姆番茄红素的茎记录的最高茎增长了46.15%,其中Hibiscus sabdariffa的总体最高百分比为224.24.24.24.24%的attribs intibed in 24.27%。关键字:纳米颗粒,P。longifolia,肥料,Solanum L,Amaranthus V,Fhibiscus S.,2020)。在所选叶子应用的PL-KNPS植物参数上观察到的这种独特的增加是证实绿色合成钾纳米颗粒在农业领域的重要性。引言纳米技术在各种化学构成和尺寸的范围内产生了各种可靠的纳米材料合成(Kaushick等,2010),并且在农业中的纳米纤维化剂变得更加相关(Rafique等,2018:Rizwan,2019年,2019年)。由于降雨量有限,干旱,灌木不足导致土壤肥力降低和有机肥料等因素,作物产量下降了(Batsmanova et al。尽管将化肥用于补充土壤生育能力和最大化农作物的产量,但气候调节,食物和饲料生产的不平衡,生态系统中的碳储存和水的保留有助于土壤降解(Batsmanova等人。,2020)。为提高土壤质量并提高生产率,肥料是解决方案。它们在农作物耕作中的连续和密集使用中最终仅使用少于50%的施加量,而另一个因作物未利用的作物而被水解,光解,浸出,浸出和固定的微生物和
Pharma Innovation Journal 2023; 12(5):382-386 ISSN(E):2277-7695 ISSN(P):2349-8242 NAAS评级:5.23 TPI 2023; 12(5):382-386©2023 TPI www.thepharmajournal.com收到:20-02-2023接受:25-03-03-2023 Kavya诉土壤科学和农业化学系Keladi Shivappa shivappa shivappa shivappa shivappa shivappa nayaka shivappa nayaka nayaka University of农业和研究印度卡纳塔克邦,北卡纳塔克邦,Keladi Shivappa Nayaka农业与园艺科学的土壤科学和农业化学,贝拉迪·史瓦帕帕帕帕帕帕巴省农业和园艺科学系,印度科学科学和印度Shimoga,karnataka,karnataka ranata,karnataka,karnataka,karnataka ranta,karnataka,karnataka,kararata ranta,印度卡纳塔克邦莱彻尔农业科学大学农业化学,印度卡纳塔克邦:迪莱普R土壤科学与农业化学系,农业科学大学,科学大学,印度卡纳塔克邦雷克尔大学农业科学。