乳酸细菌(LAB)因其在食品保存中的作用及其产生细菌素的潜力而被广泛认可,天然抗菌肽有效地针对各种粮食源性病原体。本研究的重点是从摩洛哥南部和北部收集的生奶样品中产生细菌素的实验室菌株的分离和表征。表型和基因型方法用于鉴定分离的菌株,并针对包括大肠杆菌和沙门氏菌属的普通食源性病原体评估了它们的抗菌活性。结果表明,有几种实验室菌株具有明显的细菌素产生和对靶病原体的强烈抑制作用。这些发现突出了这些菌株在食品行业中的潜在应用,尤其是为了提高发酵食品的安全性和保质期。这项研究为将来研究实验室作为天然食品防腐剂的生物技术剥削提供了基础。
AI驱动的教育工具预计将在未来几年影响全球超过20亿学习者,以前所未有的方式改变STEM和非茎学科(Louly,2024; Sandhu等,2024;世界经济论坛,2024年)。人工智能(AI)正在通过个性化的辅导,实时反馈和自适应学习经验彻底改变教育(Akavova等,2023)。AI使教师能够根据学生的需求制定个性化的发展计划。它对诸如批判性思维,情感智力和道德推理等智力任务的影响是一个有争议的话题(Çela等,2024)。对驱动的工具的更大依赖性是对表面学习的关注,并且与复杂的问题解决和辩论最少的参与度(çela等,2024)。虽然AI在所有受试者中都增强了教育,但在STEM和非茎领域之间,它确实如此不均,尤其是在与基于结构化的基于逻辑的学习与解释性,抽象推理的互动(Nagaraj等,2023; Singer等,2023)。在STEM教育中,AI的分析和结构化逻辑性质在解决问题,模拟和复杂计算的自动化方面提供了极大的好处。然而,非茎领域,例如人文和社会科学,需要更多的解释性,道德和创造性的参与,而AI不太可能提供。本文探讨了这些差异,同时倡导AI的均匀整合,以增强而不是代替人类的教学。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2021年5月21日。; https://doi.org/10.1101/2021.03.15.435378 doi:biorxiv Preprint
抽象的客观类风湿关节炎(RA)是一种慢性炎症性疾病,会导致关节损伤,包括软骨降解和骨侵蚀。骨形态发生蛋白9(BMP9)是TGF-β超家族的成员,在成骨和组织修复中起关键作用。然而,其在RA中的骨侵蚀和炎症中的作用仍然不足。本研究旨在评估BMP9在RA中的治疗潜力,重点是其对骨骼破坏,成骨和炎症的影响。本研究的材料和方法,使用免疫组织化学,qRT-PCR和Western印刷物分析了来自RA和骨关节患者的滑膜组织中的BMP9表达。通过Micro-CT成像,组织学分析和临床评分,在CIA小鼠模型中评估了BMP9对骨骼破坏的治疗作用。成骨分化,而通过耐锈酸磷酸酶染色检查破骨细胞活性。荧光双标记用于跟踪新的骨形成。数据,并进行了适当的统计检验以确定显着性。在这项研究中,在RA患者的滑膜组织和CIA小鼠的踝关节中,BMP9表达显着下调。BMP9在CIA小鼠中的治疗改善了关节炎症,如肢体肿胀,下关节炎指数减少和改善的组织形态所示。此外,BMP9显着减轻了骨质流失,这可以通过骨矿物质密度和小梁结构增加证明。但是,BMP9处理并未明显影响破骨碎裂发生或骨吸收。BMP9还增强了骨矿化和形成,如矿物质的含量和骨形成率的提高所示。此外,BMP9促进了滑膜细胞的成骨分化,增强了碱性磷酸酶活性和矿物结节的形成。这些结果表明,BMP9对RA的关节炎症和骨质流失具有保护作用,这可能是通过促进骨形成而不会影响破骨细胞活性的。结论我们的研究得出的结论是,靶向BMP9减轻RA中的炎症并促进成骨的差异,强调BMP9是解决RA中骨骼破坏的有前途的治疗靶标。关键词BMP9,类风湿关节炎,成骨分化,骨骼破坏,炎症
抽象无线传感器网络(WSN)已成为未来最有前途的技术之一。这是通过技术的进步和小型,廉价和智能传感器的可用性来实现的,从而产生了成本效率且易于部署的WSN。但是,研究人员必须采取各种挑战,以促进现实世界中WSN技术的广泛部署。在本调查中,我们概述了无线传感器网络及其应用领域,包括为了进一步推动技术应解决的挑战。然后,我们回顾了WSN的最新技术和测试床。最后,我们确定了几个未来需要研究的开放研究问题。我们的调查与现有调查不同,因为我们专注于无线传感器网络技术的最新发展。我们回顾了领先的研究项目,标准和技术以及平台。此外,我们重点介绍了WSN研究中最近的一种现象,该现象是探索传感器网络与其他技术之间的协同作用,并解释这如何帮助传感器网络实现其全部潜力。本文打算通过对最近的发展进行全面调查来帮助新的研究人员进入WSN领域。
儿童在发展过程中表现出巨大的学习能力,但在学习时间和学习轨迹和实现的技能水平方面存在很大的个体差异。发育科学的最新进展表明,许多因素的贡献,包括遗传变异,大脑可塑性,社会文化背景和学习经验对个人发展。这些因素以复杂的方式相互作用,从而证明了儿童的特质和异质学习路径。尽管人们对这些复杂的动态的认识越来越多,但目前对诸如阅读等文化获得技能的发展的研究仍然典型地关注儿童在离散时间上表现的快照。在这里,我们认为这种“静态”方法通常是不足的,并且在对学习能力的内部差异的预测和机理理解中的进步限制了。我们提出了一个动态框架,该框架突出了在跨多个阶段和过程学习过程中捕获短期轨迹的重要性,作为在阅读示例中以长期发展的代理。该框架将有助于解释儿童学习路径和成果的相关变异性,并培养研究儿童如何成长和学习的新观点和方法。
随着全球抗击气候变化加剧的努力,微藻作为一种未充分利用但有希望的资源而脱颖而出。新的研究强调了微藻作为抵抗气候变化的解决方案的能力,但研究人员警告说,“智能微藻生物培训”需要释放其全部潜力。
“将石墨材料塑造成高级应用的复杂几何形状,一直是一个关键挑战,限制了其广泛采用。”滑铁卢化学工程系教授Milad Kamkar博士说。“使用我们提出的方法,我们可以将3D-Print石墨烯变成任何形状。”
虽然参与性的研发得到广泛赞誉,但有效的明确程序可以确保最终用户参与仍然是圣杯。我们的研究提出了一种简单的参与方法,该方法是通过Laser Pulse开发的嵌入式研究翻译(ERT),并证明了其在乌干达西尼罗河地区的小型持有人蔬菜养殖社区中的应用。ERT涉及将研究结果直接集成到特定情况下的实际应用或解决方案中。它强调研究人员和利益相关者之间的合作,确保发现与现实世界中的相关,可行并有效地应用。它建立在四个支柱上:(i)研究人员与利益相关者之间的伙伴关系(ii)参与产生相关研究(III)产品的过程,以及(iv)对发现的传播。基于这些支柱及其基本原则,建议进行实施过程,从启动阶段开始,研究人员积极涉及各种各样的合作伙伴和利益相关者。这是一个设计阶段,其特征是参与性讨论,协作决策和计划。这些步骤指导实施阶段,在此期间,合作伙伴仍在积极参与研究。最后,伙伴关系共同传播了这些发现,以最大程度地发挥影响力和吸收。接下来是第二阶段(CO验证),其中利益相关者通过FGD和反馈会议验证信息。在我们的研究中,我们使用五阶段的程序将方法调整为乌干达语境:在第一阶段(了解环境),研究人员迅速获得了有关目标种植系统的相关方面以及通过文献审查和定量基线调查的广泛干预领域的尽可能多的信息。在第三阶段(干预措施的优先领域共选择),研究人员和利益相关者共同选择了目标作物以及要解决的特定约束。第四阶段是共同发展,涉及潜在技术的共同体和共同测试。最后阶段(传播)包括通过合作伙伴关系和其他传播渠道来扩展共同开发的技术。
附加信息同行评审:发行者感谢Sectional Editor和其他匿名审阅者对这项工作的同行评审的贡献。重印和权限信息可从https://horizonepublishing.com/ journals/index.php/pst/pst/open_access_policy Publisher's Notes提供:Horizon E-Publisting Group在公开的地图和机构分配中的管辖权索赔方面仍然是中性的。索引:《今日植物科学》,由Horizon E-Publishing Group出版,由Scopus,Web of Science,Biosis Previews,Clarivate Analytics,NAAS,UGC CARE等涵盖,请参见https://horizonepublishing.com/journals/journals/journals/ index.php/index.php/pst/index/index/index/indexing_abstracting copyright:这是根据Creative Commons归因许可条款分发的开放访问文章,只要原始作者和来源被记入任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制(https://creativecommons.org/licenses/licenses/