在 Inconel 718 的激光定向能量沉积 (L-DED) 中,所制造部件的微观结构在很大程度上取决于所应用的工艺参数和由此产生的凝固条件。大量研究表明,工艺参数沉积速度和激光功率对微观结构特性(如枝晶形态和偏析行为)有重大影响。本研究调查了当线质量(从而导致的层高)保持不变时,这些工艺参数的变化如何影响微观结构和硬度。这使得能够对使用相同层数但工艺参数截然不同制造的几何相似样品进行微观结构比较。这种方法的好处是,所有样品的几何边界条件几乎相同,例如特定于层的构建高度和导热横截面。对于微观结构分析,应用了扫描电子显微镜和能量色散 X 射线光谱,并以定量方式评估结果。沿堆积方向测量了微观结构特征,包括一次枝晶臂间距、沉淀 Laves 相的分数和形态以及空间分辨的化学成分。使用半经验模型,根据一次枝晶臂间距计算发生的冷却速率。应用了其他研究人员使用的三种不同模型,并评估了它们对 L-DED 的适用性。最后,进行了显微硬度测量,以对材料机械性能的影响进行基线评估。
要使激光粉末床熔合 (L-PBF) 增材制造工艺可持续,需要有效的粉末回收。在 L-PBF 中回收 Ti6Al4V 粉末会导致粉末氧化,然而,这种对 L-PBF 过程中激光-物质相互作用、过程和缺陷动力学的影响尚不清楚。这项研究使用原位高速同步加速器 X 射线成像揭示并量化了在多层薄壁 L-PBF 过程中处理低 (0.12 wt%) 和高 (0.40 wt%) 氧含量 Ti6Al4V 粉末的影响。我们的结果表明,高氧含量的 Ti6Al4V 粉末可以减少熔体喷出、表面粗糙度和制造部件中的缺陷数量。随着部件中氧含量的增加,由于固溶体强化,显微硬度会增加,并且微观结构没有明显的变化。
过渡金属二甲藻(TMD)涂层由于出色的摩擦学行为而吸引了巨大的科学和工业兴趣。范式示例是MOS 2,即使硒化合物和牙柳氏菌表现出了卓越的摩擦学特性。在这里,描述了通过将它们洒到涂有Mo和W薄片的滑动金属表面上的Operando转换为润滑2D Selenides中的创新性。先进的材料表征证实了含有硒化物的薄摩擦膜的贸易化学形成,将摩擦的系数降低至周围空气中的0.1以下,通常使用完全配方的油达到水平。从头算分子动力学模拟揭示了原子机制,从而导致剪切诱导的纳米植物的硒化单层合成。使用SE Nanopowder提供热稳定性,并防止在真空环境中产生膨胀。此外,在接触界面中普遍存在的条件下,SE纳米圆的高反应性产生了高度可重现的结果,这使其特别适合补充带有固体润滑剂的滑动组件,避免了由环境分子引起的TMD-润滑性脱落的持久问题。建议的直接方法展示了一种非常规且聪明的方法,可以合成Operando中的TMD并利用其摩擦和减轻磨损的影响。
Bendamustine盐酸盐在开始使用此药物之前仔细阅读所有这些传单,因为它包含了重要的信息。•保留此传单。您可能需要再次阅读。•如果您还有其他问题,请询问您的医生或药剂师。•如果您有任何副作用,请与您的医生或药剂师交谈。这包括此传单中未列出的任何可能的副作用。请参阅第4节。此传单中的内容1。什么是[产品名称]以及2。使用[产品名称]3。如何使用[产品名称]4。可能的副作用5。如何存储[产品名称] 6。包装和其他信息的内容1。[产品名称]是什么,它用于[产品名称]是一种包含一种活性物质的药物,该药物称为Bendamustine盐酸盐(以下称为Bendamustine)。bendamustine是一种用于治疗某些类型癌症(细胞毒性医学)的药物。bendamustine单独使用(单疗疗法)或与其他药物的治疗以治疗以下癌症形式:•慢性淋巴细胞性白血病如果氟达拉滨组合化学疗法不适合您,•非霍奇金淋巴瘤不适合先前的疾病,或者仅适用于自动疗法,或者仅适用于自动疗法,或者是多种疾病,则•多次疗法,••多次疗法,••多重疗法,•移植,沙利度胺或含硼替佐米的疗法不适合您。2。在使用[产品名称]之前,您需要知道的是不要使用[产品名称]:•如果您对盐酸Bendamustine或该药物的其他任何成分过敏(第6节中列出)。•在母乳喂养时,如果在哺乳过程中需要用弯曲他的丁唑汀治疗,则必须停止母乳喂养(请参阅妊娠,母乳喂养和生育能力); •如果您患有严重的肝功能障碍(对肝脏功能细胞的损害)。•如果您的皮肤或白色的白色是由肝脏或血液问题引起的(黄疸)。•如果您严重干扰了骨髓功能(骨髓抑郁症),并且血液中白细胞和血小板的数量发生了严重变化•如果您在开始治疗前不到30天进行了主要的手术手术。•如果您感染,尤其是伴随着白细胞(白细胞减少)的降低的感染。
添加剂制造(AM)研究已经大幅增长,其应用程序从医疗部门到汽车不等。,由于其温度升高,因此对航空航天部门引起了极大的兴趣。组件是使用两个最常见的金属AM工艺制造的,激光粉末床融合(L-PBF)和激光定向能量沉积(L-DED)。比较了两个过程之间的微观结构和机械性能并对比,表明尽管这些过程从根本上是基于相同的物理现象,但过程之间的规模差异使它们无法直接可比。因此,必须在特定的应用程序和过程中执行合金设计和处理窗口开发。
虽然PXRD是获得有关材料的固态结构的最简单,最快的方法,但单晶X射线差异(SC-XRD)仍然是有关分子构成和周期性排列的综合数据的金标准。从粉末数据(SDPD)中确定结构也是晶体结构确定的一种活跃而实践的方法。然而,高质量的粉末X射线差异数据和对专家晶体学家的访问可能是要求,而使用的方法比SC-XRD涉及更多的时间,约束和试验和错误,然后才能获得分子有机晶体的成功。2 - 4统计评估是否可以通过Rietveld
摘要 简介:大多数肺部疾病都是由遗传和环境原因导致的严重疾病,死亡率高且症状严重。目前,可用的治疗方法具有缓解作用,许多靶点仍然被认为无法用药。基因疗法是一种提供创新治疗解决方案的有吸引力的方法。CRISPRCas9 已建立起基因组编辑的显著潜力,对靶向突变具有高选择性。为了确保高效性和最小全身暴露,必须研究输送和给药途径的关键组成部分。 涵盖的领域:本综述重点介绍了将 CRISPRCas9 输送到肺部,利用脂质纳米颗粒 (LNP),这是临床上最先进的核酸载体。我们还旨在强调肺部给药作为局部给药途径的好处,以及使用喷雾干燥来制备稳定的核酸干粉制剂,可以克服多重肺部屏障。 专家意见:探索肺部给药以将装载在 LNP 中的 CRISPRCas9 作为干粉输送,增加了实现高效性和减少不良反应的机会。文献中尚未报道过装载在LNP嵌入微粒中的CRISPRCas9,但它有可能到达并积聚在肺部的靶细胞中,从而提高整体疗效和安全性。
Ferrum是CAN Seaming Technology的领先提供商。和我们所有的罐头缝线一样,F400产品线由于多年的经验,能力和创新技术而脱颖而出。为满足最高挑战和卫生标准而建造,该系列的低维护和持久的接缝尤其适用于敏感食品,例如牛奶粉。此范围的CAN接缝满足所有要求,为不同的CAN格式,简单的操作概念以及扩展设备的选择提供了短的转换时间。
摘要 金属粉末床熔合 (MPBF) 不是一个独立的过程,通常需要其他制造技术(例如热处理和表面处理操作)来实现高质量的组件。为了优化给定组件的每个单独过程,必须考虑和了解其在整个过程链中的进展,这可以通过使用经过验证的模型来实现。本文旨在概述可用于开发 MPBF 流程链数字孪生的各种建模技术,包括物理和数字实体之间的数据传输方法和不确定性评估。通过使用技术就绪水平对建模技术的当前成熟度进行评估,以了解其成熟度。总结了 MPBF 研究领域(即预测:粉末变形;温度;材料特性;变形;残余应力;以及拓扑优化)、后处理(即建模:加工;热处理;和表面工程)和数字孪生(即制造流程链模拟;互操作性和计算性能)中使用的基于物理的建模技术的优点和缺点。还讨论并总结了这些 MPBF 研究领域面临的挑战的未来前景。
摘要 金属粉末床熔合 (MPBF) 不是一个独立的工艺,通常需要其他制造技术(例如热处理和表面处理操作)才能获得高质量的组件。 为了优化给定组件的每个单独工艺,必须考虑和了解其在整个工艺链中的进展,这可以通过使用经过验证的模型来实现。 本文旨在概述可用于开发 MPBF 工艺链数字孪生的各种建模技术,包括物理实体和数字实体之间的数据传输方法和不确定性评估。 通过使用技术就绪水平对建模技术的当前成熟度进行评估,以了解其成熟度。总结了 MPBF 研究领域(即预测:粉末变形;温度;材料特性;变形;残余应力;以及拓扑优化)、后处理(即建模:加工;热处理;和表面工程)和数字孪生(即制造过程链的模拟;互操作性和计算性能)中使用的基于物理的建模技术的优点和缺点。还讨论并总结了这些 MPBF 研究领域面临的挑战的未来前景。