• 长效制剂是减少运动波动发展的首选。 • 罗匹尼罗、普拉克索和罗替戈汀很少同时用于同一患者。 • 麦角衍生的多巴胺激动剂(培高利特、溴隐亭、卡麦角林、利舒脲)不应作为一线药物,因为存在纤维化副作用的风险。实际上,这些药物已不再使用。 • 罗替戈汀透皮给药系统使其特别适合吞咽困难、胃排空延迟、禁食(例如手术前后)或难以遵守复杂口服方案的患者。24 小时内稳定的血浆水平对有严重运动波动和夜间症状的患者很有用。 • 在开始使用激动剂之前,必须告知患者冲动控制障碍和嗜睡的风险。应建议患者在出现困倦时不要开车。 左旋多巴制剂
摘要阿尔茨海默氏病的病理生理学仍然是一个难题。越来越多的证据阐明了氧化应激参与AD的病理学,使其成为治疗性发育的主要靶标。由线粒体功能改变,电子传输链失调和其他来源产生的活性氧(ROS)提升了凝集的Aβ和神经原纤维缠结,从而进一步刺激了ROS的产生。氧化应激引起对脂质,蛋白质和DNA的损伤导致神经元死亡,从而导致AD。此外,氧化应激会诱导凋亡,这是由ERK1/2和NRF2途径的调节触发的,随后GSK-3β表达增加并降低了PP2A活性。氧化应激通过干扰RCAN1,CREB/ ERK,NRF2,PP2A,NFκB和PI3K/ AKT等各种信号通路来夸大疾病状况。研究报道了TNF-α在氧化应激刺激中的作用,该抗氧化剂刺激的作用增强了抗氧化剂水平。据报道,其他药物如普拉己烯,美金刚,卡维丝醇和褪黑激素可以激活CREB/RCAN1和NRF2途径。与此相一致,epigallocatechin Gallate和Genastein还靶向NRF2和CREB途径,从而导致下游途径(如AS和KEAP1)的激活,这些途径可以改善氧化应激条件。多奈酮和白藜芦醇减少氧化应激,并激活AMPK途径以及PP2A激活,从而促进tau去磷酸化和神经元存活。本研究详细描述了氧化应激在AD中的作用,涉及氧化应激诱导的AD的主要信号通路和正在针对这些途径的开发中的药物,这些途径可能有助于AD的治疗进展。
开发针对多巴胺受体 D 2 的光亲和探针以确定帕金森病药物的靶点作者:Spencer T. Kim 1、Emma J. Doukmak 1、Raymond G. Flax 1、Dylan J. Gray 1、Victoria N. Zirimu 1、Ebbing de Jong 3、Rachel C. Steinhardt 1,2,4摘要:多巴胺通路控制着生理和行为中非常重要的方面。这些通路中具有治疗重要性并且研究最深入的受体之一是多巴胺受体 D 2 (DRD2)。遗憾的是,使用传统的分子生物学技术很难研究 DRD2,而且大多数针对 DRD2 的药物是许多其他受体的配体。在这里,我们开发了能够使用光亲和标记与 DRD2 共价结合以及提供用于检测或亲和纯化的化学手柄的探针。这些探针在传统的生化测定中表现得像良好的 DRD2 激动剂,并且能够在细胞和受体标记的化学生物学测定中发挥作用。使用探针对大鼠全脑进行标记和亲和力富集,可以对探针的相互作用蛋白进行蛋白质组学分析。对命中结果的生物信息学研究表明,探针结合了帕金森病网络中的非典型靶向蛋白以及逆行内源性大麻素信号、神经元一氧化氮合酶、毒蕈碱乙酰胆碱受体 M1、GABA 受体和多巴胺受体 D 1 (DRD1) 信号网络。后续分析可能会深入了解该通路与帕金森病症状的具体关系,或为治疗提供新的靶点。这项工作强化了这样一种观点,即化学生物学和基于组学的方法相结合可以提供分子“相互作用组”的广阔图景,也可能深入了解药物观察到的效应的多效性,或者可能表明新的应用。关键词:多巴胺受体、光交联、光亲和标记 (PAL)、蛋白质组学、生物信息学、内源性大麻素途径、GABA 受体、毒蕈碱受体 M1、普拉克索、罗匹尼罗、DRD2 1. 简介 从欣快到精神病的生理状态均受多巴胺神经系统的神经解剖学通路支配。1 组成该系统的多巴胺能神经元通过将神经递质多巴胺与其受体结合而发挥作用。这些神经元表达的多种多巴胺受体亚型控制着行为的不同方面,据推测各个亚型会结合起来并形成不同的生化途径。2,3 但不幸的是,用药物或其他非内源性刺激物选择性地靶向单个多巴胺受体亚型(更不用说通路)极其困难。 1 从通过小分子引导神经化学的角度来看,多巴胺能系统控制的生理反应种类繁多,再加上缺乏选择性药物,使得药物/探针开发极具挑战性。多巴胺受体通常有 5 种亚型,即 D 1-5 ,它们又分为两个家族:D 1 样受体(D 1 和 D 5 )和 D 2 样受体(D 2-4 ),其中 D 1 和 D 2 受体表现出