3.4外部评估组(EAG)发现了1项研究,评估了Cari Heart对可疑稳定冠状动脉疾病患者的心脏死亡的预后表现(Oikonomou等人。2021)。这项研究是一项模型开发和验证研究,其中包括3,912人患有CTCA来评估稳定的冠状动脉疾病。这项研究的结果表明,比基于传统临床风险因素(吸烟,高胆固醇血症,高血压,糖尿病,公爵指数,高风险斑块特征和上心脂肪组织体积的存在)的风险模型比风险模型更好。EAG还发现了支持冠状动脉炎症与心脏不良事件风险之间联系的研究。委员会同意,根据Oikonomou等人的结果。(2021),Cari Heart可能会改善心脏死亡的风险预测。(2021),Cari Heart可能会改善心脏死亡的风险预测。
可持续性(ICELI)和LGMA焦点与UNFCCC。“整个2024年,从IPCC的特别报告到响应损失和损害(FRLD)的基金,从缓解工作计划到冠军的多层次行动承诺,LGMA选区积极从事INFCC程序,以确保进度进度。然而,由于现有的不平等,短期国内政治议程,复杂的地缘政治紧张局势以及到达每个社区,城市,国家,大陆的复杂地缘政治紧张局势和气候紧急情况的压力越来越大,全球努力的努力受到了质疑。通过多层次合作,LGMA对局部到全球气候行动和倡导的愿景有望成为COP29期间气候社区胜利的最有效工具之一。”
抽象的机器学习最近已成为寻找潜在量子计算优势的富有成果的领域。许多量子增强的机器学习算法批判性地取决于有效产生与存储在量子可访问存储器中的高维数据点的状态的能力。即使是对数据库中存储的许多条目的查询访问,其构造被认为是一次性开销,也有人认为,准备此类振幅编码状态的成本可能会抵消任何指数量子优势。在这里,我们使用平滑的分析证明,如果数据分析算法与小型入口输入扰动相对于较小的入门扰动,则可以通过持续的查询来实现状态准备。通常在现实的机器学习应用程序中满足此标准,其中输入数据对中等噪声进行了主观。我们的结果同样适用于量子启发的算法最近的开创性进度,其中专门构建的数据库足以在低级别病例中用于小聚集素的经典算法。我们发现的结果是,出于实用的机器学习目的,在具有量子算法或量子启发的经典经典算法的一般且灵活的输入模型下,在低级别病例的一般且灵活的输入模型下,可以进行多组载体的处理时间。
富营养化被认为是对全球河口和沿海生态系统健康的最大威胁之一。这是一种全球现象,对食物网,水质和水生化学反应有显着影响。富营养化是向河口和沿海地区供应生态系统生态能力的结果(Nixon,2009; Rabalais等,2009)。营养负荷也可能导致养分比的变化,这可能会在海洋生态系统中产生“不良干扰”。在这一目标中,至关重要的是,沿海地区可以实现良好的环境地位(GES)。引起沿海富营养化的驾驶员设置在多个人类诱发的压力源和富营养化的影响的较大框架内(例如生物多样性,生态系统降解,有害藻类绽放和底部水中的氧气表现出现的损失似乎受到与其他压力的协同作用的加剧,包括过度的压力,沿海沿海发育过度,沿海发育和气候驱动的升高,海水表面温度,海洋酸性和沿海沿岸排放。实际上,气候变化会影响养分的投入和行为,并可能加剧富营养化及其相关的负面影响(Statham,2012; Malone and Newton,2020; Rozemeijer等,2021)。富营养化对水生环境的健康的重要性及其与多种压力的联系导致汇编了当前的研究主题:“在富营养化过程中,气候变化与人为压力之间的局限性,第二卷”。然而,气候变化与富营养化之间的联系很复杂,主要与温度,风向模式,水文周期和海平面上升有关,导致淡水系统的淹没,地层的变化,流动时间和流动性时间和植物生产力,生产力,沿海风暴的活动,沿海风暴活动,物种和ecosys的变化(2012年)。
卫生专业人员基于广泛的诊断和治疗疾病和其他健康问题的理论和事实知识,研究,建议或提供预防,治愈,康复和促销卫生服务。他们可以对人类疾病和疾病的研究以及治疗方法进行研究,并监督其他工人。通常,在与健康相关的领域的高等教育机构进行研究的结果3 - 6年的时间里,通常会获得所需的知识和技能,从而获得一级或更高的资格。卫生专业人员包括医生,护士,助产士,物理治疗师,牙医,辅助医师等。
主要的抑郁症(MDD)是全球最普遍的精神病疾病之一,也是造成残疾的主要原因。MDD提出了各种症状,这些症状显着影响个人,社会和经济方面。尽管有许多针对不同分子机制的抗抑郁药治疗(ADT),但很大一部分患者的反应不足,在MDD管理中带来了巨大的挑战。因此,通常采用辅助策略,特别是涉及非典型抗精神病药的策略来增强治疗效率。Cariprazine是D2/D3部分激动剂,通过其对D3受体的选择性作用及其对5-HT1A,5-HT2A和α1B受体的调节,与其他非典型抗精神病药区分开。这种独特的药理学保证需要调查其在MDD各个症状领域的潜在有效性和耐受性,包括愉悦,兴趣和动机;情绪和自杀;睡眠和食欲;疲劳;精神运动和焦虑;和认知功能。来自动物研究和临床试验的初步证据表明,迦里替津可以改善动机,抗and虫和认知功能症状。喀里哌嗪在减轻与情绪相关的症状方面表现出希望,尽管它对焦虑及其对躁动和精神运动迟缓的影响仍然不确定。甲丙氨酸可能对表现出抗抗酸,认知降低以及可能的疲劳和高血压的MDD患者特别有益。评估喀里普拉嗪在这些症状领域的效率可以揭示模式,以支持更多个性化的抑郁症治疗方法。进一步的研究对于阐明甲哌嗪作为对重度抑郁症的成年人的辅助疗法的作用至关重要,他们对抗抑郁药单药治疗的反应不足。
抽象注意力缺陷多动症(ADHD)是一种神经发育多基因疾病,影响了世界各地5%以上的儿童和青少年。遗传和环境因素在ADHD病因中起着重要作用,这导致了整个人群中广泛的临床结果和生物学表型。与同龄人的对照相比,患者通常发现了4年滞后的大脑成熟延迟。细胞生长率的可能差异可能反映了多动症患者的临床观察结果。但是,仍未阐明细胞机制。为了检验这一假设,我们分析了诱导多能干细胞(IPSC)和神经干细胞(NSC)的增殖,这些细胞(NSC)源自男性儿童和诊断为ADHD的男孩和青少年(使用多基因风险评分评估),以及其相应的对照组。在当前的试点研究中,值得注意的是,ADHD组的NSC繁殖小于对照,而在IPSC发育阶段没有发现差异。我们来自两种不同的增殖方法的结果表明,患者发现的功能和结构延迟可能与这些体外表型差异有关,但从明显的神经发育阶段开始。这些发现是多动症疾病建模领域的第一个发现,对于更好地了解该疾病的病理生理可能至关重要。
Vision语言导航(VLN)要求代理在基于视觉观察和自然语言说明的3D环境中导航。很明显,成功导航的关键因素在于全面的场景理解。以前的VLN代理使用单眼框架直接提取透视视图的2D特征。虽然很简单,但他们为捕获3D几何和语义而努力,导致部分不完整的环境代表。为了实现具有细粒细节的全面3D表示,我们引入了体积环境(VER),将物理世界脱氧于结构化的3D细胞中。对于每个单元格,通过2D-3D采样将多视图2D特征归纳到如此统一的3D空间中。通过对VER的粗略到纤维特征进行推断和多任务学习,我们的代理人可以共同预测3D占用率,3D房间布局和3D边界框。基于在线收集的vers,我们的代理构成了体积状态估计,并构建情节内存以预测下一步。实验结果表明,我们从多任务学习的环境表示导致了VLN的可观绩效提高。我们的模型在VLN基准(R2R,Reverie和R4R)之间实现了最新的性能。