淀粉纳米颗粒(SNP)由于其无毒性,环保性,全球易用的原材料以及生物降解性而对许多应用具有吸引力。但是,淀粉的异质性质使得准备均质SNP成为一个挑战。缺乏高质量的小型SNP(SS-SNP)现有的准备方法一直在限制其实际应用。在这项研究中,我们通过结合纳米沉淀和连续离心来开发了一种新方法,以生成具有从六种不同淀粉类型的六种定义特性的SS-SNP。该方法简单,环保,需要相对较短的处理时间(<4 h),并且生成的尺寸小于50 nm。在结构,显微镜和物理上对产品进行了彻底研究。从所有淀粉类型中得出的SS-SNP产品在水中表现出很高的稳定性(最多三周),并符合实际上任何应用的要求。使用高淀粉蛋白(更线性)淀粉作为起始材料,可以实现近单分散直径SS-SNP的近乎单分散的SS-SNP。但是,所有SS-SNP主要由短链链氨型链氨型蛋白组成。 这种生产SS-SNP的一般有效方法为其在各个领域的应用提供了重要的机会。但是,所有SS-SNP主要由短链链氨型链氨型蛋白组成。这种生产SS-SNP的一般有效方法为其在各个领域的应用提供了重要的机会。
早期在线版本:该初步版本已被接受在《气候杂志》中出版,可以完全引用,并已分配DOI 10.1175/jcli-d-2 3 -0 347 .1。最终的排版复制文章将在发布时在上述DOI上替换EOR。
在当前气候模型中,全球变暖下的水文周期的预计变化仍然高度不确定。在这里,我们证明了观察性过去的变暖趋势可用于有效地在全球和区域尺度上的平均值和极端降水中有效地占领。这种约束的物理基础依赖于各个模型中相对恒定的气候灵敏度以及模型之间区域水文敏感性的合理一致性,这受大气湿度的增加而支配和调节。对于高排放情况,在全球平均水平上,预计的平均降水量变化从6.9降低至5.2%,而在极端降水中的降水量从24.5降低至18.1%,而间模型方差分别降低了31.0和22.7%。此外,约束可以应用于中间 - 高纬度地区的区域,特别是在土地上。这些约束会导致空间解决的校正,这些校正偏离了全局平均校正。本研究提供了全球范围内受到限制的水文反应,对特定区域的气候适应性有直接影响。
热带降水极端及其随着表面变暖的变化,使用全球风暴解析模拟和高分辨率观察结果进行了研究。模拟表明,对流的中尺度组织是不能以常规的全球气候模型来物理代表的过程,对于热带每日累积降水极端的变化很重要。在模拟和观察结果中,每日降水极端在更有条理的状态下增加,与较大但频繁的风暴有关。重复模拟以使气候变暖会导致每月均值每日降水极端的增长。较高的降水百分位数对对流组织具有更大的敏感性,预计随着变暖而增加。没有组织变化,热带海洋上最强烈的每日降水量以接近Clausius-Clapeyron(CC)缩放的速度增加。因此,在未来的温暖状态下,组织的增加,海洋的每日极端降水量最高的速度比CC缩放更快。
热带降水极端及其随着表面变暖的变化,使用全球风暴解析模拟和高分辨率观察结果进行了研究。模拟表明,对流的中尺度组织是不能以常规的全球气候模型来物理代表的过程,对于热带每日累积降水极端的变化很重要。在模拟和观察结果中,每日降水极端在更有条理的状态下增加,与较大但频繁的风暴有关。重复模拟以使气候变暖会导致每月均值每日降水极端的增长。较高的降水百分位数对对流组织具有更大的敏感性,预计随着变暖而增加。没有组织变化,热带海洋上最强烈的每日降水量以接近Clausius-Clapeyron(CC)缩放的速度增加。因此,在未来的温暖状态下,组织的增加,海洋的每日极端降水量最高的速度比CC缩放更快。
到2025年至2050年,研究区域的年度降雨量,最潮湿的月份经历了适度的增加,最干燥的月份显示出最小的变化。•了解未来的气候预测对于知情的决策和适应计划至关重要,以减轻气候变化对农业,水资源和基础设施等各个部门的潜在影响。
摘要。极端的降水,通常是自然界的,能够触发自然灾害,例如流量和碎屑流。气候变化适应和弹性的关键组成部分是量化了以后的气候场景中次数极端降水超过历史水平的可能性。尽管如此,目前仍认为估计未来的次数极端沉淀水平是不足的。这样做的原因可以归因于两个因素:从对流 - 渗透气候模型(充分模拟亚小时降水的概念)中,数据的可用性有限,我们用来除去外推的极端预启发返回水平的统计方法不会捕获全球暖剂的物理学。我们提出了一种基于物理的新型统计方法,用于估计极端的次数沉淀回报水平。提出的模型,依赖于温度依赖的非反应统计模型(TENAX),基于一个简约的非固定和非反应理论框架,以企业的温度为例,以物理固定的方式将其作为协变量。我们首先解释理论并提出tenax模型。使用来自Switzer- Land的几个站点的数据作为案例研究,我们证明了该模型重现亚小时降水返回水平以及某些观察到的极端沉淀的特性。然后,我们插图如何利用该模型在未来温暖的气候中仅基于潮湿的日子的气候模型的投影以及预见的降水频率变化的情况下,在未来温暖的气候下进行了极端的降水量变化。
在智利的气候下评估了耦合模型间比较项目6(CMIP6)下36个新状态的合奏 - 艺术气候模型的抽象降水和近表面温度。分析集中在四个不同的气候子区域:北智利北部,智利中部,巴塔哥尼亚北部和巴塔哥尼亚南部。在每个子区域上,首先,我们评估了整个全球气候模型(GCM)的性能,以在历史时期(1986- 2014年)(1986- 2014年)中的降水和温度观测的栅格数据集,然后分析模型的预测,即对于四个不同的共享社会经济路径(2080-2099)(2080-2099)(2080-2099)。尽管模型的特征是一般湿和温暖的平均偏见,但它们实际上是不同子区域的主要时空气候变异性。但是,对于降水和温度,所有模型均不是所有子区域中最好的。是根据泰勒技能得分定义的最佳性能模型,人们发现所谓的“热模型”可能表现出高估的气候灵敏度,这表明使用这些模型来访问智利未来的气候变化时要谨慎。我们发现,在变化方向上有强大的(90%的模型在变化方向上达成共识)预计中央智利平均降水量减少(〜-20至〜-40%)和北部的巴塔哥尼亚北部(〜-10至10至〜-30%)(〜- 10至〜-30%),在情景SSP585下,在SPSSP245上的变化在SPSSP245上的变化很大。北部智利和南部巴塔哥尼亚南部显示了整个模型中降水的不变变化。然而,未来的近表面温度变暖呈现了整个子区域的高模块间一致性,其中最大的增量发生在安第斯山脉沿线。北部智利在SSP585中显示出最大〜6°C的最大增量,然后是中央智利(最高〜5°C)。北部和南部的巴塔哥尼亚均显示出相应的增量,高达〜4°C。我们还简要讨论了这些未来变化对智利的环境和社会经济含义。