摘要:降水对土地的预测对于社会经济风险评估至关重要,但是模型差异限制了其应用。在这里,我们使用一种模式过滤技术来识别多模型合奏的各个成员的低频变化,以评估投影模式和变化幅度的模型之间的差异。特别是,我们将低频组件分析(LFCA)应用于21 CMIP-6模型中每日降水极端的强度和频率。LFCA在预计变化的空间模式下,在模型之间的一致性中带来了适度但统计学上的显着改进,尤其是在温室强迫较弱的情况下。此外,我们表明LFCA促进了对降水极端量表随着单个合奏成员内的全球温度变化而增加降水量量表的强劲识别。尽管这些速率大致与Clausius-Clapeyron关系的期望平均匹配,但各个模型都会表现出很大且显着的差异。蒙特卡洛模拟表明,这些差异至少与气候敏感性的差异一样多,导致投影变化的不确定性。最后,我们将这些缩放率与观察产品鉴定的缩放率进行了比较,这表明几乎所有气候模型都显着低估了降水量增加的速度,而降水量增加的速度已随着历史上的全球温度而扩展。用观测值的约束投影扩大了降水极端的预测强度,并减少了其分布的相对误差。
这项工作探讨了孟加拉国降水模式的详细研究,特别着重于使用马尔可夫链在六个沿海城市进行年度降雨变化。为了创建具有四个不同降水状态的强大马尔可夫链模型,并提供了对这些状态之间过渡概率的洞察力,该研究将历史降雨数据整合到了近三十年(1994- 2023年)。为选定数量的沿海电台计算了固定测试统计量(χ²),并使用此历史数据预测了不同降雨状态之间的过渡概率。发现的结果表明,测试统计量的观察值χ²对所有沿海站都很重要,表明可靠的模型拟合。这些结果强调了了解降水模式的时间演变的重要性,这对于该地区的有效水资源管理,农业规划和灾难准备至关重要。该研究强调了降雨模式的动态性质以及自适应策略减轻气候变化影响的必要性。此外,这项研究强调了气候研究的相互联系,以及增强数据收集方法和国际协作的关键需求,以弥合有关气候变异性知识差距的差距。通过参考有关气候变化,极端降雨事件以及降水模式变化的全面学术著作,该研究详细概述了该领域当前的研究景观。总而言之,这项研究不仅有助于理解孟加拉国沿海城市的降水动态,而且还为参与参与气候适应和韧性计划的政策制定者和利益相关者提供了宝贵的见解。马尔可夫链模型与广泛的历史数据集的集成是预测未来降雨趋势并制定知情策略的强大工具,以应对改变降水模式所带来的挑战。
摘要:利用过去来改善未来的预测,需要对气候和温室气体(GHG)(GHGS)对观察到的气候变化的个人气候贡献进行理解和定量,这受到气候溶液强迫和反应的大量不确定性的阻碍。为了估算历史气溶胶响应,我们通过结合观察到的热带潮湿和干燥区域观察到的变化的信号,半明确温度不对称的温度不对称,全球平均温度(GMT)以及全球平均降水(GMLP)(GMLP)的信号来归因于温度和降水的关节变化。指纹代表气候反应对气溶胶(AERS)和其余的外部强迫(NOAER;主要是GHG)源自来自历史单和所有模型的大型组合,该模型来自耦合模型对间隔项目的第6阶段的三个模型,并使用完美的模型研究选择。是由不完善的模型研究和水文灵敏度分析支持的,该分析支持了我们选择温度和降水细纹的选择。我们发现,包括温度和降水在内的诊断效果稍微更好地限制了纯粹基于温度或仅基于GMT的诊断,并允许AER冷却的归因(即使在纤维上不包含GMT时)。这些结果在来自不同气候模型的纤维上具有鲁棒性。AER和NOAER的估计贡献与其他已发表的估计值一致,包括最新IPCC报告的估计。最后,我们将气溶胶诱导的冷却的0.46 K([2 0.86,2 0.05] k)的最佳估计归因于2010年Noaer升温的1.63 K([1.26,2.00] k),相对于1850年至1900年,使用GMT和GMLP的综合信号。
热带降水极端及其随着表面变暖的变化,使用全球风暴解析模拟和高分辨率观察结果进行了研究。模拟表明,对流的中尺度组织是不能以常规的全球气候模型来物理代表的过程,对于热带每日累积降水极端的变化很重要。在模拟和观察结果中,每日降水极端在更有条理的状态下增加,与较大但频繁的风暴有关。重复模拟以使气候变暖会导致每月均值每日降水极端的增长。较高的降水百分位数对对流组织具有更大的敏感性,预计随着变暖而增加。没有组织变化,热带海洋上最强烈的每日降水量以接近Clausius-Clapeyron(CC)缩放的速度增加。因此,在未来的温暖状态下,组织的增加,海洋的每日极端降水量最高的速度比CC缩放更快。
最近,深度学习(DL)技术的指数增长,这是一种数据驱动的方法,在气象和气候预测和预测中已被证明是成功的(例如Bi等,2022; Ham等,2019; Liu et al。与NWP相比,DL模型没有明确包含大气动力学,这可能会影响其性能和应用前景(Reichstein等,2019)。值得注意的是,DL模型可能会在严重降雨事件的预测中遇到困难。有条件生成模型的使用是改善大降雨预测的有效方法,尤其是在现象中(Hess等,2022; Ravuri等,2021; Zhang等,2023)。此外,DL模型可能不符合重要的物理耦合(Han等,2020)和阻碍沉淀的预测。在这种情况下,物理先验告知的DL模型可能证明是有益的(Karniadakis等,2021; Kashinath等,2021)。
热带降水极端及其随着表面变暖的变化,使用全球风暴解析模拟和高分辨率观察结果进行了研究。模拟表明,对流的中尺度组织是不能以常规的全球气候模型来物理代表的过程,对于热带每日累积降水极端的变化很重要。在模拟和观察结果中,每日降水极端在更有条理的状态下增加,与较大但频繁的风暴有关。重复模拟以使气候变暖会导致每月均值每日降水极端的增长。较高的降水百分位数对对流组织具有更大的敏感性,预计随着变暖而增加。没有组织变化,热带海洋上最强烈的每日降水量以接近Clausius-Clapeyron(CC)缩放的速度增加。因此,在未来的温暖状态下,组织的增加,海洋的每日极端降水量最高的速度比CC缩放更快。
纳米技术是科学、工程和技术的一个分支,涉及原子或分子尺度上小于 100 纳米物质的尺寸和公差。纳米粒子由于其独特的尺寸依赖性而具有广泛的应用(Lu 等人,2012 年)。磁性纳米粒子因其广泛的应用而备受关注,例如蛋白质和酶的固定、生物分离、免疫测定、药物输送和生物传感器。纳米粒子由于尺寸小而具有较高的表面积与体积比,这赋予了纳米粒子非常独特的特性(Sagadevan 等人,2015 年)。纳米粒子独特的化学和物理性质使其非常适合设计新的和改进的传感设备;尤其是电化学传感器和生物传感器(Wang 等人,2016 年)。纳米粒子的重要功能包括固定生物分子、催化电化学反应、增强电极表面与蛋白质之间的电子转移、标记生物分子甚至作为反应物 (Luo et al. 2006))。一般来说,金属氧化物纳米粒子是无机的。Fe、Ni、Co、Mn 和 Zn 等各种纳米粒子是广泛接受的磁性材料,可用于磁传感器、记录设备、电信、磁性流体和微波吸收器等广泛应用 (Zhu et al. 2014;Poonguzhali et al. 2015)。在各种金属氧化物纳米粒子中,二氧化锰是一种重要的 P 型过渡金属氧化物
研究区域:位于西非和中部非洲北部的数据扫描盆地。研究重点:多次研究表明,全球栅格降水数据集可以为撒哈拉以南非洲的观察到的数据缺乏替代方案。这项工作评估了15个基于卫星降雨前的封闭前数据集(Arc v.2,Chirp v.2,Chirps v.2,Persiann-CDR,MSWEP v2.2和Tamsat V2.2和Tamsat V3),Reanalission,Reanalission,ERA5,JRA-55,JRA-55,Merra-2 Adj,Merra-2 Prectot,Merra-2 Prectot,Merra-2 Prectot,Merra-2 prectotcort and toctor and toctor and tho测量值(CPC V.1,CRU TS v.4.00和GPCC V.7)以及基于空间接近的区域估计方法,用于简单的每月水平衡模型GR2M的参数。基于分式样本的海上时间验证方案中的克林 - 古普塔效率评分评估了GR2M模型的区域模拟。该地区的新水文见解:结果表明,在所有降水产品中,Chirps是每月时间段的西部和中非水文建模最有效的。此外,排名前五的产品包括WFDEI-CRU,CRU,WFDEI-GPCC和GPCC。总体而言,区域水文建模对小于80,000 km 2的盆地更有效。通过空间接近度进行区域化的方法会导致各种降水产物再现排放的能力的总体下降,最值得注意的是使用WFDEI-GPCC和GPCC。chir仍然是最好的产品。
生态学的代谢理论和动态能量预算理论都预测,气候通过其对能量学的一阶决定因素的影响影响人体大小:反应性温度,碳资源和氧气可用性。尽管氧气在陆地系统中很少限制,但温度和资源在空间上有所不同。,我们使用冗余分析和变异分配来评估气候温度,降水及其季节性对北美四种西部响尾蛇组分布的多元体型的影响(Crotalus Pyrrhus,C。scutulatus,C。scutulatus,C。oreganus and C. viridis)。大多数物种在凉爽的气候中显示出增加体型的模式,并且在温暖的Xeric气候下体积减少。该模式的例外通过在每个物种的分布中的气候特质提供了其他上下文。例如,对于牛仔梭菌,温度对体型的负面影响的一般模式并不明显,牛仔梭菌在四种物种中总体上最温和的气候范围。与以前的研究相比,我们发现季节性对体型的影响可忽略不计。我们建议降水梯度与驱动种内体大小的资源可用性相关,并且温度通过增加基线代谢需求和
在温暖云中的抽象气溶胶相互作用(ACI)是历史期间有效辐射强迫(ERF)的不确定性的主要来源,并且通过扩展为推断的气候灵敏度。由于ACI(ERFACI)引起的ERF由云的强迫组成,这是由于云微物理学的变化和对微物理学的云调整。在这里,我们使用CAM6中托管的扰动参数集合(PPE)来检查驱动ERFACI的过程。对PPE的观察性约束会导致云微物理学和巨摩托学对人为气溶胶的响应的重大限制,但仅对Erfaci的限制最小。对PPE中的云和辐射过程的检查揭示了降水效率和辐射性敏感性的相互作用来缓冲Erfaci。