读者面前的这份出版物是在北约公共外交部支持的项目“虚假信息 - 通过事实将死!”中创建的。 (“虚假信息 - 事实检查!”)。虚假信息抵制可以理解为国家、社会和个人抵制政治、经济和社会计算压力的适应性,谎言以多种媒体形式传播,包括电视、广播、印刷品、网络和社交媒体,目的是影响政治和社会。经济选择,包括针对弱势群体的选择。因此,该项目的主要目标是加强黑山社会对假新闻传播的抵制,并提高公民对如何压制虚假信息、宣传、混合威胁和其他威胁的知识、认识和理解。敌对信息活动,同时以创新和非传统方式产生具有持久价值的内容,这些内容可以在北约和民间社会网络内外广泛传播。这里讨论的例子是西巴尔干地区各种国家和非国家俄罗斯和亲俄罗斯行为者的虚假信息活动,因为在过去几年中,在所谓的战略框架内混合战争期间,他们开展了极其频繁的此类活动。
6 德国法兰克福大学心肺研究所 (CPI) 心血管再生研究所。7 德国法兰克福大学医学病毒学研究所。8 德国吕贝克大学实验皮肤病学研究所。9 德国吕贝克大学心脏遗传学研究所。10 法国里尔大学里尔感染和免疫中心、INSERM U1019、CNRS UMR 9017、里尔大学、CHU Lille、里尔巴斯德研究所。11 德国汉堡-埃彭多夫大学医学中心医学微生物学、病毒学和卫生研究所。12 大学。里尔,法国里尔国家健康与医学研究院,里尔中央医院,神经内分泌脑发育和可塑性实验室,里尔神经科学与认知中心,UMR-S 1172,DISTALZ,EGID,里尔,法国。13 德国哥廷根大学医学中心神经病理学研究所。14 德国哥廷根大学生物网络动力学校园研究所。15 德国哥廷根马克斯普朗克实验医学研究所。16 德国吕贝克德国肺脏研究中心 (DZL) 成员北方气道研究中心。17 德国吕贝克大学解剖学研究所。18 瑞士巴塞尔罗氏创新中心罗氏制药研究与早期开发 (pRED)。19 德国汉堡汉堡-埃彭多夫大学医学中心神经病理学研究所。 20 科隆大学遗传学研究所,科隆,德国。21 汉堡-埃彭多夫大学医学中心法医学研究所,汉堡,德国。22 赛诺菲罕见及神经疾病研究中心,弗雷明汉,马萨诸塞州,美国。23 圣地亚哥-德孔波斯特拉大学-卫生研究所 CIMUS 生理学系,圣地亚哥-德孔波斯特拉,西班牙。
全球人口增长已导致许多自然生态系统的土地利用 (LU) 发生变化,从而导致影响土壤质量的环境条件恶化。在缺水且土壤有机资源不足的系统中,土地利用对土壤质量的影响尤为显著。因此,本研究的主要目标是使用成像光谱 (IS) 评估人类活动(即土地利用,如放牧、现代农业和径流收集系统)对以色列干旱地区土壤质量的影响。为此,选择了 12 种物理、生物和化学土壤特性,并将其进一步整合到土壤质量指数 (SQI) 中,以此作为评估以色列南部干旱地区土地利用变化的显著影响的方法。AisaFENIX 高光谱机载传感器的飞行活动用于开发区域范围内 SQI 的 IS 预测模型。使用偏最小二乘判别分析 (PLS-DA) 分类方法 (OA = 95.31%,Kc = 0.90),从高光谱图像本身提取的光谱特征在四个 LU 之间可以很好地分离。使用多元支持向量机回归 (SVM-R) 模型对光谱数据和测量的土壤指标以及总体 SQI 进行相关性分析。SVM-R 模型与几种土壤特性显著相关,包括总体 SQI (R 2 adj Val = 0.87),成功预测了 r
全球人口增长已导致许多自然生态系统的土地利用 (LU) 发生变化,从而导致影响土壤质量的环境条件恶化。在缺水且土壤有机资源不足的系统中,土地利用对土壤质量的影响尤为显著。因此,本研究的主要目标是使用成像光谱 (IS) 评估人类活动(即土地利用,如放牧、现代农业和径流收集系统)对以色列干旱地区土壤质量的影响。为此,选择了 12 种物理、生物和化学土壤特性,并将其进一步整合到土壤质量指数 (SQI) 中,以此作为评估以色列南部干旱地区土地利用变化的显著影响的方法。AisaFENIX 高光谱机载传感器的飞行活动用于开发区域范围内 SQI 的 IS 预测模型。使用偏最小二乘判别分析 (PLS-DA) 分类方法 (OA = 95.31%,Kc = 0.90),从高光谱图像本身提取的光谱特征在四个 LU 之间可以很好地分离。使用多元支持向量机回归 (SVM-R) 模型对光谱数据和测量的土壤指标以及总体 SQI 进行相关性分析。SVM-R 模型与几种土壤特性显著相关,包括总体 SQI (R 2 adj Val = 0.87),成功预测了 r
2021 - 2024年期间的战略计划是基于国家立法和大学宪章的规定。同时,获得了“ Alexandru Ioan Cuza”大学的管理和运作的原则: - 罗马尼亚宪法所保证的大学自治,并指学术社区的思想,行动,决策和空间。基于这一原则,大学建立:使命,战略,结构,活动,组织和功能,招聘,评估和促进人力资源的政策,与类似机构,人力资源,财务和材料商品管理的协作政策。根据同一原则,Iaşi的“ Alexandru Ioan Cuza”大学促进了与来自国外的类似机构的教育和研究领域的合作关系。- 学术自由 - 教学,研究和学习的自由。学术自由是由法律保证的,并涉及以下方面:在尊重大学道德,参与教育和研究活动的条件下,选择研究,研究,解释,出版和转移的主题和方法,自由表达意见,组织和协调他们,选择自由和免费学生。
1简介1.1一般1.2景观公园管理计划2状态的描述和评估2.1一般描述2.1基础架构2.1 2.1.1.1.1.1 2.2自然价值观的描述和评估自然价值观,生物多样性和景观公园2.2.1自然价值状态2.2视觉和远见和长期客观性范围3.2公园管理3.2公园管理3. 3 3. 3. 3.5.1特许比率3.5.2任务管理3.5.3经理组织3.5.4服务的操作和开发计划3.5.5。资金3.6.1估计成本3.6.2估计的财务资源3.6.3成本4保护和开发指南之间的关系,行为,活动和干预的保护制度及其在太空中的位置4.1一般保护和开发方向4.2保护和开发方向,保护和开发方向,对个人行为,活动和干预措施,4.2.2文化远处4.2.3环境保护(3.2.3环境保护(3.2.3)
硝唑尼特已被研究用于治疗结直肠癌和乳腺癌。然而,其分子靶点和途径尚未被探索用于治疗肝细胞癌 (HCC)。利用网络药理学方法,研究了硝唑尼特治疗 HCC 的潜在靶点和分子途径。从 GeneCards 数据库中提取 HCC 靶点。使用 Swiss Target Prediction 和 Super Pred 预测硝唑尼特的潜在靶点。使用 VENNY 在线工具分析相交靶点。使用 Cytoscape 构建了蛋白质-蛋白质相互作用 (PPI)、聚类和核心靶点-途径网络。使用注释、可视化和集成发现数据库 (DAVID)、基因本体 (GO) 和京都基因和基因组百科全书 (KEGG) 进行途径富集分析。使用 Auto Dock Vina 将硝唑尼特与抗 HCC 核心靶点进行分子对接。共鉴定出硝唑尼特168个潜在靶点、13,415个HCC相关靶点和153个交叉靶点。鉴定出前8个抗HCC核心靶点:SRC、EGFR、CASP3、MMP9、mTOR、HIF1A、ERBB2和PPARG。GO富集分析表明,硝唑尼特可能通过影响参与多个生物过程(BP)(蛋白质磷酸化、跨膜受体蛋白酪氨酸激酶(RTKs)信号通路、MAP激酶活性的正向调控等)的基因靶点而发挥抗HCC作用。KEGG通路和核心靶点-通路网络分析表明,癌症中的通路和癌症中的蛋白聚糖是两条对硝唑尼特抗HCC作用有显著贡献的关键通路。分子对接结果显示,抗HCC八大核心靶点与硝唑尼特之间存在活性相互作用的潜力。我们的研究为硝唑尼特可能对HCC具有独特的治疗效果这一观点提供了理论基础,而所确定的药理学靶点和途径可能作为HCC治疗的生物标志物。
数以千计的科学家为参加在芝加哥举行的 AGU 2022 年秋季会议而穿上厚厚的衣服,我们 Eos 提醒大家“科学引领未来”,未来就是科学。这个未来以过去为依据,以现在为指导,将以个人、社区和联盟的贡献为特征,并具有明确的目标和实现这些目标的实际基准。有效监测北极永久冻土的未来源于过去的冰河时代,正如 20 世纪 90 年代一位美国科学家和俄罗斯研究人员之间建立的不可思议的友谊所阐明的那样。在 Jenessa Duncombe 的最新一期《曲线》(第 38 页)中了解有关西伯利亚、名为 Willy 的猛犸象和后苏联友谊的更多信息。John Aber 和 Scott V. Ollinger 提醒我们,温室气体排放的预测影响在一个世纪内没有太大变化(第 58 页)。他们提供了清晰的、数据驱动的大纲建议,以传达信息。不幸的是,冷战时期对核冲突的恐惧再次浮出水面。在第 27 页,Alan Robock 和 Stewart C. Prager 概述了科学家可以采取的措施,以降低此类冲突的可能性。最后,他们认为,“解决核武器问题的最终方法是在全球范围内禁止核武器。” 在 COVID19 大流行开始时,气溶胶科学家是警告病毒空气传播质量的哨兵。政策制定者和公众对这些研究人员的反应构成了我们今天生活的世界,以及我们正在为未来建设的世界。Richard J. Sima 的“冠状病毒时代的室内空气污染”(第 44 页)是一项关于科学、挫折以及最终希望的研究。早期诊断也是 Matthieu Chartier 的《掠夺性会议的惊人崛起》(第 64 页)的希望。Chartier 提出建议,帮助社区确保更值得信赖、更透明的未来。草根组织正在采取行动,重新定义未来的大学董事会。在第 52 页,Kimberly M. S. Cartier 描述了 Harvard Forward、Penn State Forward 和 Yale Forward 的努力,这些校友团体组织起来选举强大的董事会成员,决定大学如何应对气候变化。“我们是否正在进入气候建模的黄金时代?”(第 30 页)Mark Betancourt 在分析百亿亿次计算和欧盟的 Destination Earth 项目时问道。每秒可进行 1018 次运算的百亿亿次级超级计算机可能会带来革命性的变化(分辨率?)新模型还可以帮助社区制定适应和缓解策略。科学家如何模拟和孪生各种影响地球气候的系统。最后,一组科学家鼓励他们的同行在 Mark A. Parsons、Daniel S. Katz、Madison Langseth、Ham pa puram Ramapriyan 和 Sarah Ramdeen 的观点中给予“应得的荣誉”(第 20 页)。他们认为,围绕学术引用和荣誉的传统协议已经过时,而需要的是“更广泛地设计应得荣誉的地方”。从北极真菌到学术脚注,改变可能是一个缓慢的过程,但我们的社区可以立即实施一些步骤。科学引领未来,未来就在现在。