摘要 - 当今的商业格局的特点是竞争和动态,这将人力资源管理转变为组织的基本战略合作伙伴。员工营业额会带来影响生产力和知识管理的风险。本研究的重点是使用机器学习(ML)模型来预测员工的离职。在培训过程中,使用了一个由4410个记录和29个变量组成的数据集,在培训和评估十种模型的过程中,遵循了人工智能(AI)方法。调查结果表明,XG增强分类器(XGBC)和随机森林(RF)模型达到了最佳准确性和性能率,为98.8%和98.7%。Followed by Decision Tree Classifier (DT) with 97.6%, and the other models, such as Gradient Boosting Classifier (GBC), Ada boost Classifier (AC), Logistic Regression (LR), KN Classifier (K-NNC), SGD Classifier (SGDC), Support Vector Classifier (SVC) and Nu Support Vector Classifier (NuSVC), achieved the following费率:分别为88.4%,85.4%,84%,82.2%,83.0%,83.0%,55.0%。最后,可以得出结论,模型在预测中是有用且有效的。建议在人力资源管理策略中实施实际实施,以进行主动干预。
摘要越来越多的工作发现,早期和最近的生命压力之间的不匹配,而不是压力的累积影响,这导致与压力有关的健康结果。迄今为止,尚无工作检查这种不匹配如何与与压力相关的认知结果有关。我们通过评估参与者(n = 154,M = 18.7,104女性)的早期和最近的生命压力,利用相同的库存来解决这一差距,然后在混合静止 - 信号/侧翼任务中评估其抑制性控制。令人惊讶的是,我们发现更大程度的压力不匹配与更好的响应抑制有关(即跨多种分析方法较小的停止信号反应时间)。认知抑制(即侧翼干扰效应)与压力不匹配无关。因此,这些结果表明,早期和最近的生命压力之间的不匹配程度与抑制作用相同,与急性压力会影响反应抑制作用,这表明反应抑制可能是导航急性应激和一般环境条件的重要认知过程,而急性环境条件与一般的环境条件均与不匹配预期应力的条件相匹配。
病原微生物的抗菌素耐药性 (AMR) 问题已成为全球公共卫生危机,对现代医疗保健系统构成重大威胁。人工智能 (AI) 和机器学习 (ML) 技术的出现为该领域带来了革命性的变化。这些先进的计算方法能够处理和分析大规模生物医学数据,从而揭示耐药性发展背后的复杂模式和机制。人工智能技术越来越多地用于根据基因含量和基因组组成预测病原体对各种抗生素的耐药性。本文回顾了人工智能和机器学习在预测病原微生物抗菌素耐药性方面的最新进展。我们首先概述了微生物耐药性的生物学基础及其流行病学研究。随后,我们重点介绍了用于耐药性预测的主要人工智能和机器学习模型,包括但不限于支持向量机、随机森林和深度学习网络。此外,我们探讨了该领域的主要挑战,例如数据可用性、模型可解释性和跨物种耐药性预测。最后,我们通过算法优化、数据集扩展和跨学科协作,探讨微生物耐药性研究的新视角和解决方案。随着人工智能技术的不断进步,未来我们将拥有对抗病原微生物耐药性的最有力武器。
1。Alexandre Gramfort,Martin Luessi,Eric Larson,Deni A. Engemann,Strohmeier Daniel,Christian Brodbeck,Roman Goj,Mainak Jas,Brooks,Lauri和Matti S.任何Python的Mne-Python。神经科学的前线,7(267):1-13,2013。2。Cabanero-Gome,L.,Hervas,R.,Constance,I。和Rodrig-Benite,L。(2021)。eglib:用于EEG提取的Python模块。3。 Head,T.,Mechcoder,G。L.,&Shcherbatyi,I。 (2018)。 skikit-optimize:v0。 5.2。 版本V0,5 4。 Joel,D。,Berman,Z (2015)。 人脑。 112(50),15468-15473。 5。 Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。3。Head,T.,Mechcoder,G。L.,&Shcherbatyi,I。(2018)。skikit-optimize:v0。5.2。版本V0,5 4。Joel,D。,Berman,Z (2015)。 人脑。 112(50),15468-15473。 5。 Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Joel,D。,Berman,Z(2015)。人脑。112(50),15468-15473。5。Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y.(2017)。LightGBM:高速公路激动人心的梯度。神经信息系统的进步,30,3146–3154 6。Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。超越二元类别的性别:对不同差异,心理病理学和基因型的检查。Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Sychiatry Academy,58(8),787-798。7。TOOLE,JM和BOYLAN,G。B.(2017)。neral:新生儿脑电图的定量特征使用matlab。ARXIV预印型ARXIV:1704.05694。Vinck,M.,Oostenveld,R.,Van Wingerden,M.,Battaglia,F。,&Pennartz,C。M.(2011)。 在存在体积传导,噪声和样品大小偏置的情况下,改进了相结合的相同步指数。 Neuroimage,55(4),1548-1565。 8。 Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。 功能连通性预测性别:静止大脑连通性中性别差异的证据。 人类脑图,39(4),1765-1776。Vinck,M.,Oostenveld,R.,Van Wingerden,M.,Battaglia,F。,&Pennartz,C。M.(2011)。在存在体积传导,噪声和样品大小偏置的情况下,改进了相结合的相同步指数。Neuroimage,55(4),1548-1565。8。Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。 功能连通性预测性别:静止大脑连通性中性别差异的证据。 人类脑图,39(4),1765-1776。Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。功能连通性预测性别:静止大脑连通性中性别差异的证据。人类脑图,39(4),1765-1776。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
电化学电池是我们社会中无处不在的设备。当用于关键任务应用时,在高度变化的操作条件下准确预测其放电终止的能力至关重要,以支持运营决策并充分利用整个电池的使用寿命。虽然有充电和放电阶段潜在过程的准确预测模型,但老化建模仍然是一个悬而未决的挑战。这种缺乏理解通常会导致模型不准确,或者每当电池老化或其条件发生重大变化时,就需要耗时的校准程序。这对在现实世界中部署高效、强大的电池管理系统构成了重大障碍。在本文中,我们介绍了 Dynaformer,这是一种新颖的深度学习架构,它能够同时从有限数量的电压/电流样本推断老化状态,并以高精度预测真实电池的全电压放电曲线。在评估的第一步中,我们调查了所提出的框架在模拟数据上的性能。在第二步中,我们证明了只需进行少量微调,Dynaformer 就能弥补模拟与从一组电池收集的实际数据之间的差距。所提出的方法能够以可控且可预测的方式利用电池供电系统直至放电结束,从而显著延长运行周期并降低成本。
本文已接受出版并经过完整的同行评审,但尚未经过文字编辑、排版、分页和校对过程,这可能会导致此版本与记录版本之间存在差异。请引用本文 doi: 10.1002/hep.32735
糖尿病在具有并发症的高收入和低收入国家中越来越普遍(1-3)。它可能导致微血管(肾病,视网膜病和神经病)和宏 - 血管并发症(4-6)。除了管理高血糖外,糖尿病患者还需要临床监测和评估其他危险因素,并管理并发症的潜在预测因素(6-8)。糖尿病神经病的发病率正在增加,即使撒哈拉以南非洲人的现有病例相对降低(9)。糖尿病神经病(DNP)是糖尿病最常见的并发症(10,11)。根据在拉丁美洲进行的系统审查,其患病率在2型DM和1型糖尿病中的患病率在7.0%至34.2%之间的范围为34.5%(6)。尽管大约一半的糖尿病患者无症状对于DNP,但大多数患者都会出现麻木,刺痛,疼痛和无力,导致全世界造成残疾的残疾(12-15)。它会因慢性疼痛,跌倒,肢体截肢和足部溃疡而导致的生活质量。DNP的这些表现进一步导致睡眠障碍,焦虑和抑郁(6,10,15)。糖尿病神经病是低收入和高收入国家的全球医疗保健问题(16,17)。估计每30秒在世界某个地方,由于糖尿病神经病而进行下肢截肢(18)。糖尿病神经病是全球施加社会经济负担和残疾的糖尿病并发症的迅速增长(7,19 - 21)。IT占足迹溃疡的80%,50-60%的非创伤肢体截肢(15)。糖尿病患者中糖尿病神经病的汇总患病率在全球22%至46.5%(6)范围内。在非洲和埃塞俄比亚,它分别在22-66%至52.2 - 53.6%之间,分别患有糖尿病神经病(22-24)。由于诊断迟到,筛查和诊断资源的不足,对血糖的控制不佳,健康支出不足,医疗资源短缺以及缺乏质量糖尿病护理的增加,发展中国家的糖尿病神经病的患病率和发生率很高(20,22)。在黑狮医院进行的一项研究表明,糖尿病神经病是主要的糖尿病并发症,
AAbstr bstract act.. 在过去十年中,机器学习越来越吸引多个科学领域的研究人员,特别是在增材制造领域。同时,这项技术对许多研究人员来说仍然是一种黑箱技术。事实上,它允许获得新的见解,以克服传统方法(例如有限元方法)的局限性,并考虑制造过程中发生的多物理复杂现象。这项工作提出了一项全面的研究,用于实施机器学习技术(人工神经网络),以预测 316L 不锈钢和碳化钨直接能量沉积过程中的热场演变。该框架由有限元热模型和神经网络组成。还研究了隐藏层数和每层节点数的影响。结果表明,基于 3 或 4 个隐藏层和整流线性单元作为激活函数的架构可以获得高保真度预测,准确率超过 99%。还强调了所选架构对模型准确性和 CPU 使用率的影响。所提出的框架可用于预测模拟多层沉积时的热场。
结果:在574名受访者中,有161个母亲的孩子被认为是疫苗固化的(拒绝= 7;延迟= 154);疫苗犹豫的患病率为28.05%。在所有推荐的疫苗中都观察到了延迟,但是仅在四种疫苗中看到拒绝或不情愿(丙型肝炎出生剂量= 1; IPV 1和2 = 2;麻疹1和2 = 3;以及rota 1、2和3 = 1)。The respondents' demographics like no or lower parent education (OR = 3.17; 95%CI = 1.50–6.72) and fewer antenatal visits (OR = 2.30; 95%CI = 1.45–3.36) showed higher odds, whereas the upper socioeconomic status showed lower odds (OR = 0.09; 95%CI = 0.02–0.36) toward vaccine hesitancy.The WHO– SAGE dimensions like awareness (OR = 0.14; 95%CI = 0.03–0.53), poor access (OR = 7.76; 95%CI = 3.65–16.51), and low acceptability of the individual (OR = 07.15; 95%CI = 1.87–27.29), community (OR = 6.21; 95%CI = 1.58–24.33)与疫苗犹豫显着相关。
