滑行仍然是许多机场的主要瓶颈。最近,已经提出了几种为滑行飞机分配有效路线的方法。这些方法所依赖的路线算法依赖于对穿越每一段滑行道所需时间的准确预测。许多特征都会影响滑行时间,包括所走的路线、飞机类别、机场的运营模式、交通拥堵信息和当地天气状况。使用几个国际机场的真实数据,我们比较了多个预测模型并调查了这些特征的影响,得出了准确建模滑行时间的最重要特征的结论。我们表明,使用一小部分特征可以实现高精度,这些特征包括所有机场普遍重要的特征(出发/到达、距离、总转弯、平均速度和最近的飞机数量)以及特定目标机场的少数特征。从所有特征转移到这个小子集会导致在 1、3 和 5 分钟内正确预测的动作下降不到 1 个百分点。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
方法:从Shanxi Cancer Hospital收集的晚期非小细胞肺癌的462例患者被随机分配(以7:3的比例)与训练队列和内部验证队列分配。筛选影响患者3年生存的独立因素,并通过使用单因素,然后进行多因素COX回归分析创建预测模型。 使用一致性指数(C-指数),校准曲线,接收器操作特征曲线(ROC)和决策曲线分析(DCA)评估模型的性能。 单独接受化学疗法的收集的患者,以及接受化学疗法与免疫疗法结合的患者使用两组之间的倾向得分匹配,并在筛选的变量中进行了亚组分析。筛选影响患者3年生存的独立因素,并通过使用单因素,然后进行多因素COX回归分析创建预测模型。使用一致性指数(C-指数),校准曲线,接收器操作特征曲线(ROC)和决策曲线分析(DCA)评估模型的性能。单独接受化学疗法的收集的患者,以及接受化学疗法与免疫疗法结合的患者使用两组之间的倾向得分匹配,并在筛选的变量中进行了亚组分析。
新辅助化学免疫性疗法已彻底改变了非小细胞肺癌(NSCLC)的治疗策略,并确定可能对这种先进治疗的候选者具有重要的临床意义。目前的多机构研究旨在开发一种深度学习模型,以预测基于计算机断层扫描(CT)成像的NSCLC中对新辅助免疫疗法的病理完全反应(PCR),并进一步探讨了拟议的深度学习签名的生物学基础。在2019年1月至2023年9月,总共有248名接受新辅助免疫疗法的参与者在Ruijin医院,Ningbo Hwamei医院接受NSCLC的手术,然后在Ruijin医院进行NSCLC手术和Zunyi医科大学的后医院。在新辅助化学免疫性疗法之前的2周内进行了成像数据。鲁伊因医院的患者被分为培训集(n = 104)和6:4比率的验证集(n = 69),而宁波·霍马伊医院(Ningbo Hwamei Hospital)和祖尼医科大学(Zunyi)医科大学的其他参与者则是外部队列(n = 75)。在整个人群中,在29.4%(n = 73)的病例中获得了PCR。我们对PCR预测深度学习签名曲线下的区域(AUC)为0.775(95%的置信间隔[CI]:0.649-0.901)和0.743(95%CI:0.618-0.869)的验证集和外部队列中的0.5%(95%)(95%)(95%)(95%)(95%)。临床模型的0.689)和0.569(95%CI:0.454-0.683)。此外,较高的深度学习评分与微环境中细胞代谢途径和更多抗肿瘤免疫的上调相关。我们开发的深度学习模型能够预测NSCLC患者的新辅助化学免疫性疗法。
摘要目的:在现实世界中描述一种方法,以通过公共牙科服务与斯德哥尔摩地区的公共牙科服务与初级卫生保健之间的跨专业协作来识别患有未诊断前观和2型糖尿病的人。设计:描述性观察性研究。设置:该研究是在瑞典斯德哥尔摩地区的七个地点进行的。每个合作网站都由一家初级健康诊所和牙科诊所组成。主题:研究参与者包括18岁以上的成年人,他们访问了公共牙科服务,并且没有糖尿病前期或2型糖尿病的病史。主要结果指标:根据公共牙科服务的风险评估协议进行选择性筛查。在调查的方法(牙科和糖尿病)中,被诊断为龋齿和/或牙周炎的成年人被转介给初级卫生保健诊所,用于筛查糖尿病前期和2型糖尿病。结果:Dentdi在2017年至2020年之间在七个地点引入,所有这些都继续使用该方法。共有863名来自公共牙科服务的参与者转交给了初级卫生保健。中有396人接受了在初级卫生保健中心进行筛查的邀请。24个人不符合纳入标准,导致研究中总共包括372人。在372名参与者中,27%(101)的葡萄糖水平升高,其中12个被诊断为2型糖尿病,根据研究分类为89个糖尿病。结论:Dentdi是一种可行的跨专业协作方法,每个专业都会在日常临床实践中所包含的能力,以早日鉴定患有糖尿病前观察和2型糖尿病的人,并具有完整的护理链。目标是在斯德哥尔摩县甚至瑞典的其他地区传播这种方法。
本文已接受出版并经过完整的同行评审,但尚未经过文字编辑、排版、分页和校对过程,这可能会导致此版本与记录版本之间存在差异。请引用本文 doi: 10.1002/hep.32735
摘要越来越多的工作发现,早期和最近的生命压力之间的不匹配,而不是压力的累积影响,这导致与压力有关的健康结果。迄今为止,尚无工作检查这种不匹配如何与与压力相关的认知结果有关。我们通过评估参与者(n = 154,M = 18.7,104女性)的早期和最近的生命压力,利用相同的库存来解决这一差距,然后在混合静止 - 信号/侧翼任务中评估其抑制性控制。令人惊讶的是,我们发现更大程度的压力不匹配与更好的响应抑制有关(即跨多种分析方法较小的停止信号反应时间)。认知抑制(即侧翼干扰效应)与压力不匹配无关。因此,这些结果表明,早期和最近的生命压力之间的不匹配程度与抑制作用相同,与急性压力会影响反应抑制作用,这表明反应抑制可能是导航急性应激和一般环境条件的重要认知过程,而急性环境条件与一般的环境条件均与不匹配预期应力的条件相匹配。
免疫系统中主要的组织相容性复合物(MHC)I类和II类分子的关键作用已得到很好的确定。本研究旨在开发一种新型的机器学习框架,用于通过MHC I类和II类分子预测抗原肽表现。通过整合大规模质谱数据和其他相关数据类型,我们基于深度学习提供了预测模型ONMIMHC。我们使用独立的测试集对其性能进行了严格的评估,ONMIMHC在MHC-I任务中的PR-AUC得分为0.854,Top20%-PPV为0.934,这表现优于现有方法。同样,在MHC-II预测的域中,我们的模型ONMIMHC的PR-AUC得分为0.606,TOP20%-PPV为0.690,表现出优于其他基线方法。这些结果证明了我们模型ONMIMHC在准确预测MHC-I和MHC-II分子之间的肽MHC结合后的优势。凭借其出色的准确性和预测能力,我们的模型不仅在一般的预测任务中出色,而且在预测新抗原针对特定癌症类型的新抗原方面也取得了显着的结果。特别是对于子宫菌群子宫内膜癌(UCEC),我们的模型成功地预测了新抗原,对普通人类等位基因具有很高的结合概率。这一发现对于开发针对UCEC的个性化肿瘤疫苗非常重要。
摘要 天气和气候预测主要受高维性、许多不同空间和时间尺度上的相互作用以及混沌动力学的影响。这使得该领域的许多问题变得相当复杂,而且尽管计算成本巨大,但最先进的数值模型仍不足以满足许多应用的需求。因此,使用人工智能等新兴技术来解决这些问题很有吸引力。我们表明,可以使用深度神经网络模拟高度简化的大气环流模型的完整动态,既能提供未来几天模型状态的良好预测,也能提供稳定的长期气候时间序列。这种方法也部分适用于更复杂和更现实的模型,但只能用于预测未来几天模型的天气,而不能用于创建气候运行。使用 50-100 年的数据来训练网络就足够了。可以将相同的神经网络方法与数值集合天气预报的奇异值分解相结合,以便使用神经网络生成概率集合预报。从更基本的层面上讲,我们表明,在简单的动态系统设置中,前馈神经网络推广到系统新区域的能力似乎存在局限性。这是由于网络的不同部分学习对系统的不同部分进行建模所致。相反的是,对于另一个简单的动态系统,这被证明不是一个问题,这让人怀疑在更复杂的模型背景下简单模型的结果的实用性。此外,我们表明神经网络在某种程度上能够“学习”缓慢变化的外部强迫对系统动力学的影响,但只有在给定足够广泛的强迫机制的情况下才能做到这一点。最后,我们提出了一种补充操作天气预报的方法。给定初始场和过去天气预报的误差,使用神经网络预测新预报的不确定性,仅给定新预报的初始场。
虽然有广泛的信息有关肠道菌群如何改变正常人与糖尿病个体之间的组成,但几乎没有证据表明在糖尿病前期发生的变化是否显而易见(T2DM的初步状态对T2DM的变化,这些变化与这些变化相对于正常的eugglycemempiations and themiabiaia而在e -euglycemempiation中的特征),以及与正常的链接有关)以及 糖尿病。在这篇综述中,我们的目标是总结肠道微生物组中的组成转移的所有发现,这些发现与尤金血糖状态相比,这些发现显示在糖尿病前和糖尿病的个体中发生。我们的综述还强调了由于肠道中存在不同微生物环境而导致的新陈代谢改变的潜在病理生理机制。此外,我们还收集了有关各种因素所起的作用的可用证据,例如饮食变化和运动,以及它们在诱导肠道微生物组变化中的潜在作用。最后但并非最不重要的一点是,我们的审查还评估了随后的益生菌和共生,二甲双胍和acarbose带来的微生物群的变化。此外,我们还评估了上述干预措施在减轻糖尿病前期糖尿病的进展中的使用。我们认为,这项综述可以帮助了解肠道微生物组在糖尿病前期发作的动态作用,以及是否有可能通过正确的措施恢复到尤格利西亚。
