广泛用作航空航天和核工程(在裂变和聚变应用)的结构材料、金属加工工具和坩埚,以及腐蚀环境中的化学反应容器。最近,所有组成元素含量相当的复杂浓缩合金 (CCA) 已成为 RA 研究的一个新课题 [3, 4, 5, 6]。从纯金属到 CCA 的转变通常会改善材料性能和/或出现新的有益工程特性。在过去的 15-20 年里,这类合金一直是深入研究的主题。如今广泛讨论的高熵合金 [7, 8, 9] 是 CCA 的一个特例,其中合金元素的数量等于或超过五种。但即使涉及的元素数量只有三四种,与纯金属相比,高构型熵和严重的晶格畸变也会导致 CCA 材料性质发生质的变化。Senkov 等人。 [3, 10] 研究了一种 W 0.25 Ta 0.25 Mo 0.25 Nb 0.25 合金,该合金在高温下表现出有趣的力学性能:在 850K 至 1800K 的温度范围内,屈服应力极高(约 600 MPa)并且似乎几乎与温度无关。人们认为造成这一不寻常特征的主要机制之一是 CCA 的局部晶格畸变 (LLD) [7, 11],它抑制了位错运动。根据这一推测,在 Zou 等人最近的研究中 [12],他们通过高分辨率透射电子显微镜证实了 Nb-Mo-Ta-W 耐火合金中的局部畸变。经典分子动力学 (MD) 模拟是研究 CCA 特性最有力的工具之一。这种建模的关键部分是原子间势。因此,为此类系统开发可靠且广泛适用的势能是计算材料科学中的一项基本任务。对于耐火 CCA,Zhou 等人 [13, 14] 报道了一类可扩展至合金的嵌入式原子方法 (EAM) 势能。2013 年,Lin 等人 [15] 将 Zr 和 Nb 组分纳入该组势能中。这些势能被广泛用于探测耐火 CCA 中缺陷的行为 [16, 17, 18, 19, 20]。然而,由于可预测性较差,使用该模型获得的模拟结果最多只能视为定性的——即使对于纯金属也是如此。例如,对于纯钨,Zhou 的势能严重高估了熔化温度(比实验值高出近 1000K)[21],并且与从头算计算结果相比,显示出错误的螺位错 Peierls 势垒特征(峰值和形状)[22]。对于纯钼,Zhou 的模型给出了螺位错的极化核心
25。K. Nakamura, M. Yamaki, M. Sarada, S. Nakayama, C. R. T. Vibat, R. B. Gennis, T. Nakayashiki, H. Inokuchi, S. Kojima, K. Kita, Two Hydrophobic Subunits Are Essential for the Heme b Ligation and Functional Assembly of Complex II (Succinate-Ubiquinone Oxidoreductase) from Escherichia coli( *)。J. Biol。 化学。 271,521–527(1996)。J. Biol。化学。271,521–527(1996)。271,521–527(1996)。
1 哈佛医学院生物医学信息学系,美国马萨诸塞州波士顿 02115 2 哈佛大学系统、合成和定量生物学系,美国马萨诸塞州剑桥 02118 * 通讯作者
Authors : Sen Li 1,2 ,3† , Manuel Delgado-Baquerizo 4 † , Jixian Ding 1 , Han Hu 1,2 , Weigen Huang 1,2 , Yishen 4
引入含有β-淀粉样蛋白(Aβ)和神经原纤维缠结(NFTS)的聚集淀粉样蛋白斑的沉积物是由高磷酸化的TAU(PTAU)组成的,是阿尔茨海默氏病(AD)的主要神经病理学特征。aβ的沉积之前是NFT在所有形式的AD,5和稀有遗传形式的疾病中的沉积之前,是由于突变的(AD-MUT)基因促进毒性Aβ在大脑中的沉积。因此,一个明显的假设是Aβ对于所有AD的启动和进展至关重要。虽然Aβ沉积显然起着重要作用,但缺乏启动和/或维持AD发病机理的证据。例如,表达一种或什至几个人类AD转基因的实验动物保证其人类10载体中的AD无法表现出强大的神经变性或NFT(1-3)。导致数百项失败的临床试验,仅在最近的一些试验中才显示出适度的临床疗效,有时甚至是有争议的临床疗效(4)。最后,多达三分之一的老年人具有足以诊断为AD诊断的Aβ沉积,但在认知上是正常的,并且可能仍然如此(5)。这些发现表明Aβ需要不同的共同因素15