学习表征捕获对世界的非常基本的理解是机器学习的关键挑战。隐藏在数据中的解释因素的层次结构是如此一般的表示,并且可以通过分层VAE实现。然而,培训层次的VAE总是遭受“后塌陷”的苦难,其中数据信息很难传播到更高级别的潜在变量,因此导致层次结构不良。为了解决这个问题,我们首先是从信息理论的角度来减轻后层崩溃的现有方法的缺点,然后突出了正规化的必要性,即在维持不同级别之间的依赖性的同时,将数据信息明确传播到高级潜在变量。这自然会导致提出高级潜在表示作为顺序决策过程的推断,这可能受益于应用强化学习(RL)。将RL的目标与正规化的目标保持一致,我们首先引入了一条跳过的途径,以获取奖励,以评估潜在的潜在表示的信息内容,然后基于它的Q-VALUE函数可能具有正规化的一致优化方向。最后,策略梯度是典型的RL方法之一,用于训练层次VAE,而无需引入梯度估计器。1。简介实验结果坚定地支持我们的分析,并证明我们提出的方法有效地减轻了后塌陷问题,学习了信息的层次结构,获得了可解释的潜在表示,并且在下游任务中明显优于其他基于层次的VAE方法。
生成模型的最新进展导致了模型,这些模型既可以为大多数文本输入产生现实和相关的信息。这些模型每天都用于生成数百万张图像,并具有巨大影响诸如生成艺术,数字营销和数据增强等领域。鉴于它们的影响力,重要的是要确保生成的内容反映全球的伪影和周围环境,而不是过分代表世界的某些地区。在本文中,我们使用众包研究的研究衡量了通过dall·e 2产生的普通名词(例如房屋)的地理代表,以及稳定的扩散模型,其中包括27个国家 /地区的540名参与者。为了有意地指定没有国家名称的意见,生成的图像最反映了美国之后是印度的周围,而顶级世代很少反映出所有其他国家的周围环境(平均得分少于5分中的3个)。在输入中指定国家名称的代表性增加了1。平均在5-点李克特(Dall)的李子量表上为44点。75对于稳定的扩散,许多国家的超高分数仍然很低,这突出了将来模型在地理上更具包含的需求。最后,我们研究了量化使用用户研究的产生图像的地理代表性的可行性。1
3。Kumar S,Soldatos G,Ranasinha S,Teede H,PallinM。在囊性纤维化相关糖尿病的管理中,连续葡萄糖监测与对血糖的自我监测:系统评价和荟萃分析。J囊肿纤维。2023 JAN; 22(1):39-49。 doi:10.1016/j.jcf.2022.07.013。4。kong,爱丽丝P.亚太共识建议在糖尿病管理中应用连续葡萄糖监测。糖尿病研究与临床实践20110718110718。https://doi.org/10.1016/j.diabres.2023.110718
我们使用两种互补视觉方式探索视觉增强学习(RL):基于框架的RGB凸轮和基于事件的动态视觉传感器(DVS)。iSTING多模式视觉RL方法在有效提取与任务相关的信息时经常遇到挑战。为了解决这个问题,我们提出了用于视觉RL的分解多模式表示(DMR)框架。它将输入分为三个不同的组成部分:与任务相关的效果(共同功能),RGB特异性噪声和DVS特异性噪声。共同创作表示与RL任务相关的两种模式中的完整信息;这两个噪声组件都受到数据重构损失以避免信息泄漏的约束,与共同创作形成对比,以最大程度地差异。广泛的经验表明,通过明确分开不同信息的类型,我们的方法可实现与最先进的方法相比,实质性改善的政策绩效。
我们介绍了Florence-2,这是一个新型视觉基础模型,具有统一的,及时的代表,用于量级计算机视觉和视觉语言任务。在转移学习方面表现出色时,他们努力通过简单的说明执行各种任务,这意味着处理各种空间层次结构和语义粒度的复杂性。Florence-2旨在将文本推出作为任务说明,并以文本形式产生理想的结果,无论是限制,对象检测,接地还是分割。这种多任务学习设置需要大规模的高质量注释数据。为此,我们使用自动化图像注释和改进的迭代策略,共同开发了1.26亿张图像的FLD-5B。我们采用了一个序列结构,以训练佛罗伦萨-2,以执行多功能和全面的视觉任务。对众多任务的广泛评估表明,佛罗伦萨-2是具有未曾预性零击和微调功能的强大愿景基础模型竞争者。
尽管[插入强迫]对[插入偏置过程]的影响的扩增将发生在数十年的时间尺度上,但与[插入有偏见的过程]本身相关的固有时间尺度通常是在小时的顺序上。因此,原则上应该可以通过在短期天气预测模式下研究此类模型的性能来评估[插入过程]的异常值是否现实。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
推动是一项必不可少的非划算操作技能,用于任务,从预抓操作到场景重新排列,关于场景中的对象关系的推理,因此在机器人技术中广泛研究了推动动作。有效使用推动动作通常需要了解受操纵对象的动态并适应预测与现实之间的差异。出于这个原因,在文献中对推动作用进行了效果预测和参数估计。但是,当前方法受到限制,因为它们要么建模具有固定数量对象的系统,要么使用基于图像的表示,其输出不是很容易解释并迅速累积错误。在本文中,我们提出了一个基于图神经网络的框架,以根据触点或关节对对象关系进行建模,以效应预测和参数估计推动操作。我们的框架在真实和模拟环境中都得到了验证,这些环境包含不同形状的多部分对象,这些对象通过不同类型的关节和具有不同质量的对象连接,并且在物理预测上的表现优于基于图像的表示。我们的方法使机器人能够预测并适应其观察场景时推动动作的效果。它也可用于使用从未看过的工具进行工具操作。此外,我们在基于机器人的硬盘拆卸的背景下证明了杠杆起作的6D效应预测。
维也纳,奥地利 - 2024年4月1日 - 一家侧重于复杂,高度准确的DNA分子组装的合成生物学公司Ribbon Biolabs GmbH,今天宣布,其自定义DNA合成的早期访问计划以及其基于应用程序的产品的启动的早期访问计划。这些程序进一步为精选的生物制药和生命科学公司敞开了大门,以亲自访问Ribbon独特的技术和合成DNA组装的方法。色带将在今年在加利福尼亚州圣何塞举行的Synbiobeta会议上提供更多细节。
