学习表征捕获对世界的非常基本的理解是机器学习的关键挑战。隐藏在数据中的解释因素的层次结构是如此一般的表示,并且可以通过分层VAE实现。然而,培训层次的VAE总是遭受“后塌陷”的苦难,其中数据信息很难传播到更高级别的潜在变量,因此导致层次结构不良。为了解决这个问题,我们首先是从信息理论的角度来减轻后层崩溃的现有方法的缺点,然后突出了正规化的必要性,即在维持不同级别之间的依赖性的同时,将数据信息明确传播到高级潜在变量。这自然会导致提出高级潜在表示作为顺序决策过程的推断,这可能受益于应用强化学习(RL)。将RL的目标与正规化的目标保持一致,我们首先引入了一条跳过的途径,以获取奖励,以评估潜在的潜在表示的信息内容,然后基于它的Q-VALUE函数可能具有正规化的一致优化方向。最后,策略梯度是典型的RL方法之一,用于训练层次VAE,而无需引入梯度估计器。1。简介实验结果坚定地支持我们的分析,并证明我们提出的方法有效地减轻了后塌陷问题,学习了信息的层次结构,获得了可解释的潜在表示,并且在下游任务中明显优于其他基于层次的VAE方法。
近年来,已经提出了连续的潜在空间(CLS)和DISCRETE潜在空间(DLS)深度学习模型,以改善医学图像分析。但是,这些模型遇到了不同的挑战。cls模型捕获了复杂的细节,但由于其强调低级特征,因此在结构表示和易男性方面通常缺乏解释性。尤其是,DLS模型提供了可解释性,鲁棒性以及由于其结构性潜在空间而捕获粗粒度信息的能力。但是,DLS模型在捕获细粒细节方面的功效有限。为了确定DLS和CLS模型的局限性,我们采用了Synergynet,这是一种新型的瓶颈体系结构,旨在增强现有的编码器 - 核编码器分割框架。Synergynet无缝地将离散和连续的表示形式整合到利用互补信息中,并成功保留了细学的表示的细节。我们对多器官分割和CAR-DIAC数据集进行的实验实验表明,SynergyNet的表现优于包括Transunet:Transunet:DICE评分提高2.16%的其他最新方法,而Hausdorff分别分别提高了11.13%。在评估皮肤病变和脑肿瘤分割数据集时,我们观察到皮肤病变分割的交互分数的1.71%的重新提高,脑肿瘤分割的增长率为8.58%。我们的创新方法为增强医学图像分析关键领域中深度学习模型的整体性能和能力铺平了道路。
量子计算已成为一个新兴领域,可能彻底改变信息处理和计算能力的格局,尽管物理上构建量子硬件已被证明是困难的,而且当前嘈杂中型量子 (NISQ) 时代的量子计算机容易出错且其包含的量子比特数量有限。量子机器学习是量子算法研究中的一个子领域,它对 NISQ 时代具有潜力,近年来其活动日益增多,研究人员将传统机器学习的方法应用于量子计算算法,并探索两者之间的相互作用。这篇硕士论文研究了量子计算机的特征选择和自动编码算法。我们对现有技术的回顾使我们专注于解决三个子问题:A) 量子退火器上的嵌入式特征选择,B) 短深度量子自动编码器电路,以及 C) 量子分类器电路的嵌入式压缩特征表示。对于问题 A,我们通过将岭回归转换为量子退火器固有的二次无约束二元优化 (QUBO) 问题形式并在模拟后端对其进行求解来演示一个工作示例。对于问题 B,我们开发了一种新型量子卷积自动编码器架构,并成功运行模拟实验来研究其性能。对于问题 C,我们根据现有技术的理论考虑选择了一种分类器量子电路设计,并与相同分类任务的经典基准方法并行进行实验研究,然后展示一种将压缩特征表示嵌入到该量子电路中的方法。
背景:静息态功能性磁共振成像 fMRI (rs- fMRI) 已广泛用于研究精神疾病的大脑功能,从而深入了解大脑组织。然而,rs-fMRI 数据的高维性给数据分析带来了重大挑战。变分自动编码器 (VAE) 是一种神经网络,在提取静息态功能连接 (rsFC) 模式的低维潜在表示方面发挥了重要作用,从而解决了 rs-fMRI 数据的复杂非线性结构。尽管取得了这些进展,但解释这些潜在表示仍然是一个挑战。本文旨在通过开发可解释的 VAE 模型并使用 rs-fMRI 数据在自闭症谱系障碍 (ASD) 中测试其效用来解决这一差距。
为了实现气候目标,未来的能源系统必须严重依赖风能和光伏 (PV) 等可变可再生能源 (VRES)。随着 VRES 份额的增加,灵活性以及不同灵活性选项的智能相互作用等主题变得越来越重要。分析灵活性选项和增强未来能源系统设计的一种方法是使用能源系统建模工具。尽管存在各种可公开访问的模型,但并没有明确的评估来评估这些工具中如何体现灵活性。为了弥补这一差距,本文提取了灵活性表示的关键因素,并引入了灵活性和影响因素的新分类。为了评估当前的建模状况,我们向开放能源建模工具的开发人员发送了一份调查问卷,并使用新推出的开放 ESM 灵活性评估工具 (OpFEl) 进行分析,这是一种开源评估算法,用于评估工具中不同灵活性选项的表示。结果显示,各种不同的工具涵盖了灵活性的大多数方面。可以看出,出现了包括部门耦合元素的趋势。然而,当前模型中仍未充分体现储能和网络类型灵活性以及涉及系统运行的方面,应更详细地纳入其中。没有一个模型能够高度涵盖所有类别的灵活性选项,但通过软耦合将不同模型组合起来可以作为整体灵活性评估的基础。这反过来又可以基于 VRES 对能源系统进行详细评估。
机器人及时通过传感器数据构建持久,准确且可操作的模型的能力是自主操作的范围。在将世界表示为点云可能足以进行本地化时,避免障碍物需要更密集的场景表示形式。另一方面,更高级别的语义信息通常对于分解必要的步骤来完成一项复杂的任务,例如烹饪,自主是至关重要的。因此,迫在眉睫的问题是,手头机器人任务的合适场景表示是什么?这项调查提供了对关键方法和框架的全面回顾,这在机器人空间感知领域推动了进步,并特别关注了代表的历史演变和当前的趋势。通过将场景建模技术分类为三种主要类型(公式,公式和指标 - 语言流行),我们讨论了空间启示框架正在从构建世界的纯几何模型转变为更高级的数据结构的方式,这些模型包括更高级别的概念,例如对象实例和位置的概念。特别重点是实时同时定位和映射(SLAM)的方法,它们与深度学习的集成,以增强了鲁棒性和场景的理解,以及它们处理场景动态性的能力,作为当今驾驶Robotics研究的一些最热门的主题。我们在讨论方面的挑战和未来的研究方向的讨论中进行了结论,以建立适合长期自治的强大而可扩展的空间感知系统。
摘要 光标、头像、虚拟手或工具以及其他渲染的图形对象使用户能够与 PC、游戏机或虚拟现实系统等计算机进行交互。我们从用户的角度在“用户表征”的统一概念下分析这些不同对象的作用。这些表征是虚拟对象,它们人为地延伸了用户的身体,使他们能够通过执行不断映射到其用户表征的运动动作来操纵虚拟环境。在本文中,我们确定了一组与不同用户表征相关的概念,并对用户表征的控制和主观体验背后的多感官和认知因素进行了多学科回顾。这些概念包括视觉外观、多模态反馈、主动感、输入法、近体空间、视觉视角和身体所有权。我们进一步为这些概念提出了研究议程,这可以引导人机交互社区从更广泛的视角了解用户如何通过他们的用户表征进行感知和交互。
构建准确的地图是构成可靠的局部设备,计划和导航的关键构建块。我们提出了一种新的方法,可以利用LiDAR扫描来建立动态环境的准确地图。为此,我们建议将4D场景编码为新的时空隐式神经图表示,通过将时间依赖性的截断符号距离函数拟合到每个点。使用我们的代表,我们通过过滤动态零件来提取静态图。我们的神经表示基于稀疏特征网格,一种全球共享的解码器和时间依赖性的BAIS函数,我们以无监督的方式共同优化。要从一系列li-dar扫描中学习此表示,我们设计了一个简单而有效的损耗函数,以分段方式监督地图优化。我们在包含静态图的重建质量和动态点云的分割的各种场景上评估了我们的方法1。实验结果表明,我们的方法是删除输入点云的动态部分的过程,同时重建准确而完整的3D地图,以超出几种最新方法。