除了讨论预先传播的论文(在“论文讨论小组” A和B中)和四个主题演讲外,学校的参与者还将形成(2-3)跨学科小组(“小组工作”),以研究其选择的主题或领域(理想情况下是与参加学校的成年人的使命相关的对象)。他们将被要求考虑三个广泛的问题,同时着重于所选领域的特定转换。这样做,他们将被邀请反思想象的概念的作用,以及对他们不同学科的贡献的作用。
医学概念的有效表示对于电子健康记录的次要分析至关重要。神经语言模型在自动从临床数据中得出医学概念表示方面已显示出希望。但是,尚未对不同语言模型的比较性能,用于创建这些经验表示形式及其编码医学语义的程度,尚未得到广泛的研究。本研究旨在通过评估三种流行语言模型的有效性 - word2vec,fastText和手套 - 在创建捕获其语义含义的医学概念嵌入中的有效性。通过使用大量的数字健康记录数据集,我们创建了患者轨迹,并用它们来训练语言模型。然后,我们通过与生物医学术语进行明确比较来评估学到的嵌入式编码语义的能力,并通过预测具有不同级别可用信息的患者结果和轨迹来隐含。我们的定性分析表明,FastText学到的嵌入的经验簇与从生物医学术语获得的理论聚类模式表现出最高的相似性,分别在0.88、0.80和0.92的经验簇和0.92之间的诊断,过程和医疗代码分别为0.88、0.80和0.92之间。相反,为了预测,Word2Vec和Glove倾向于优于快速文本,而前者的AUROC分别高达0.78、0.62和0.85,分别用于现场长度,再入院和死亡率预测。在预测患者轨迹中的医疗法规时,手套在诊断和药物代码(分别为0.45和0.81)的最高级别上达到了语义层次结构的最高性能(AUPRC分别为0.45和0.81),而FastText优于其他模型的过程代码(AUPRC为0.66)。我们的研究表明,子词信息对于学习医学概念表示至关重要,但是全球嵌入向量更适合于更高级别的下游任务,例如轨迹预测。因此,可以利用这些模型来学习传达临床意义的表示形式,而我们的见解突出了使用机器学习技术来编码医学数据的潜力。
•同时,增长加速是通过增加财政失衡来维持的,这促进了债务的积累。在2008年至2019年之间,财政赤字平均约为GDP的4%,是2000 - 2007年的两倍以上。公共债务从2006年的GDP的20%增加到2022年的93%。
• Capital works: Funds cannot be used for capital works, construction or installing facilities or fixtures • Services that replicate or duplicate existing service provision(s) • Activity that is more appropriately funded through other funding bodies • Activity that is not supported by clinical evidence • Other social support services • Costs associated with research • Activities delivered outside of the South Western Sydney Region • Services which require on-going funding from SWSPHN to be sustainable.•要求MBS项目编号,如果患者诊断为糖尿病
纳赛尔·赛迪(Nasser Saidi)博士的文章题为“海湾新绿色交易的案件”,出现在2020年10月发行的Aspenia第89-90期中,并在下面发布。可以在此处下载文章的PDF文件。在海湾新绿色交易的案件中,世界处于“新石油正常”状态,价格永久性降低。海湾富有石油的国家需要多样化并专注于清洁能源的替代品。欧洲在这里也可以发挥重要作用,因为欧盟和海湾合作委员会应该建立战略技术 - 能源合作伙伴关系。海湾合作委员会(GCC)正在通过两次重大冲击进行编织。covid-19和巨大的锁定导致石油价格崩溃,在气候变化和全球能源过渡的背景下。IMF今年的全球增长率估计下降了4.9%,在2020-21期间,累计产出损失将超过12万亿美元。在海湾合作委员会内,预计2020年的增长将在2020年缩小7.1%,乐观地
摘要 - 隐式表示,例如神经辐射场(NERF),可以通过连续的神经功能在3D场景中绘制颜色,密度和语义。但是,这些模型通常需要手动和仔细的人类数据收集进行培训。本文解决了自主nerf构造的主动探索问题。我们研究代理如何学会有效地探索未知的3D环境,以便在自主性过程中收集的数据能够学习高质量的神经隐式图表示。在四个与机器人相关的下游任务上评估了所学代表的质量:经典的观点渲染,地图重建,计划和姿势改进。我们比较了不同的探索策略的影响,包括基于前沿的基于基础和学习的方法(端到端和模块化)以及针对此问题量身定制的不同奖励功能。经验结果表明,可以使用在看不见的环境中使用一集经验对积极收集的数据进行培训,并且Autonerf是一种经过加固学习训练的模块化勘探策略,使得获得了高质量的NERF,以获得高质量的NERF,以实现经过考虑的下游机器人任务。最后,我们证明,使用Autonerf可以将代理部署到以前未知的场景中,然后通过通过勘探,重建和策略填充的循环来适应场景来自动改善其导航性能。
摘要。人类活动识别在包括医疗保健和智能家居在内的各个领域都起着至关重要的作用。随着配备环境传感器的智能房屋的越来越多,人们对利用人工智能技术的兴趣越来越兴趣,以理解和认识到这些环境中的人类活动。但是,环境传感器收集的数据的规则和嘈杂性质提出了独特的挑战。为了应对这些挑战,我们建议使用接受传感器激活序列训练的预训练的嵌入式嵌入,通常是基于类似于GPT的架构的算法,以证明在智能家庭中日常生活的分类表现。此外,我们利用从一个环境中获得的知识来增强另一个环境的活动识别,研究转移学习的概念。结果表明,GPT变压器解码器的方法在多个数据集的精度和平衡精度方面优于其他算法。这些发现还突出了转移学习的潜力,从干净且大的数据集中,GPT跨解码器预先训练的嵌入在各种情况下显示出令人鼓舞的结果。
知识蒸馏(KD)旨在将知识从大型教师模型转移到较小的学生模型。虽然对比学习通过创建歧视性表示表现出了在自我监督学习中的希望,但其在知识蒸馏中的信息仍然有限,并且主要涉及歧视,忽略了教师模型捕获的结构关系。为了解决这一限制,我们提出了d Iscriminative and C On Consistent d Istillation(DCD),它采用了对比损失以及一致性正规化,以最大程度地减少教师和学生代表分布之间的差异。我们的方法引入了在训练过程中适应这些互补目标的可学习温度和偏置参数,以取代对比度学习方法中常用的固定超平衡器。通过CIFAR-100和Imagenet ILSVRC-2012的广泛实验,我们证明DCD实现了状态的表现,学生模型有时会超过教师的准确性。此外,我们表明DCD的所学表示形式将转移到小型成像网和STL-10 1时表现出较高的跨数据集泛化。
1来源:能源部劳伦斯·伯克利国家实验室,2024年美国数据中心能源使用报告; https:// eta-publications.lbl.gov/sites/default/files/2024-12/lbnl-2024-united-states-states-data-center-energy-energy-usage-usage-report.pdf 2资料来源:S&P全球董事长全球董事长Daniel Yergin Squawkbox访谈; https://x.com/centrus_energy/status/1777405352171934089 3来源:JLL,“数据中心2024 Global Outlook”; https://www.us.jll.com/en/trends-and-insights/research/research/data-center-outlook 4来源:业务内部人士,“数据中心由于人工智能繁荣,造成肥料,吸收能源和改变美国的农村地区而萌芽了”; https://www.businessinsider.com/ai-data-energy-centers-water-energy-land-2023-10 5来源:华尔街日报,“ AI-Ready Data Centers已准备好快速增长,”
查尔斯·休伯特(Charles Hubert)1,国际大实验室,丹尼尔·伯曼(Daniel Birman),安妮·K·苏克兰(Anne K Surchland)8,杨丹9,埃里克·埃吉·侯赛斯(Eric Ej Husser)7,Sounds B Miska 12,Thomas D Men-Flogel 12,Jean-Paul圣诞节4,Kai Nylund 5,Kai Nylund 5,Pan-Vazquez的Alegenro; Paninski 16,乔纳森枕头10; Yanliang Shi 11,Noam Roth 5,Michael Shitner 1 Carolina Z Socha 7,Steven Jon West 12,Anthony Zador 10,Anthony Zador 14,Peter Dayan 13,Alexander