分析临床试验数据对于评估新疗法的功效和安全性至关重要。传统上,此过程需要在生物医学,临床研究,生物统计学和数据科学方面的专业专业知识,通常使其劳动密集型,耗时且昂贵[1]。对于缺乏数据分析培训的临床医生和研究人员,复杂的统计要求可能会成为重大障碍,从而导致将研究结果转化为临床实践的延迟。以大数据集和多个终点为特征的现代临床试验的复杂性日益加剧,加剧了这些挑战[2]。临床试验越来越依赖的不同原始和次要数据源的整合进一步强调了对处理复杂的,异质数据的先进分析工具的需求。介入的临床试验依赖于严格的协议下的一致记录保存,涉及多个学科的专家,包括 - 疾病生物学,专科临床护理,毒理学,转化科学,生物统计学,生物分析科学,监管事务,监管事务和生物医学伦理学。每个领域都为试验设计提供了重要的要素,以确保试验的各个方面都符合监管标准和科学严格的严格性,以产生有关治疗功效和安全性的证据。
机器学习方法在科学过程中可能是有价值的帮助,但是他们需要面对来自非均匀实验条件的数据的具有挑战性的环境。最近,元学习方法在多任务学习方面取得了重大进展,但它们依靠黑盒神经网络,占据高计算成本和有限的解释性。利用学习问题的结构,我们认为可以使用更简单的学习模型,并具有以学习任务为例,可以使用更简单的学习模型来实现多环境的概括。至关重要的是,我们证明该体系结构可以识别系统的物理参数,从而实现可解释的学习。我们通过将其与物理系统上的最新算法进行比较,降低了我们方法的竞争性概括性能和低计算成本,从玩具模型到复杂的,非分析系统。我们的方法的解释性用原始应用在物理参数诱导的适应性和自适应控制中进行了说明。
如何在农业经济增长和环境保护之间实现双赢局势已成为要解决的紧迫问题。这项研究以中国为例,并采用计量经济学方法来探索科学技术财务对农业绿色发展及其基本机制的影响。调查结果表明,科学和技术金融对农业绿色发展具有重大积极影响,并可以有效地促进它。在替换解释的变量,添加控制变量,从市政当局中删除样本以及进行内生性测试后,此结论仍然坚固。在不同地区,科学和技术财务对农业绿色发展的影响很大,没有明显的区域差异。农村人力资本在科学与技术金融与农业绿色发展之间的关系中充当了调解人,而农业工业群体对这种关系具有一定的“掩盖效果”。科学和技术金融对农业绿色发展的影响表现出复杂的非线性关系。当科学和技术融资用作阈值变量时,它显示出显着的正边缘效应。但是,当农村人力资本和农业工业群体被用作阈值变量时,它显示出降低的显着正边缘效应。未来的研究可以进一步扩展在三个领域:首先,使用空间计量经济学模型研究科学和技术融资对农业绿色发展的空间溢出影响;其次,确定更多的中介变量并将其纳入研究框架,以更全面地证明科学和技术财务影响农业绿色发展的机制;第三,将市政级别的数据用于相关分析,以解决依赖省级数据的研究中的详细信息。
深度学习 (DL) 和可解释人工智能 (XAI) 已成为强大的机器学习工具,可用于识别空间或时间域中的复杂预测数据模式。在这里,我们考虑将 DL 和 XAI 应用于大型组学数据集,以便在分子水平上研究生物衰老。我们开发了一种先进的多视图图级表示学习 (MGRL) 框架,该框架整合了先前的生物网络信息,以细胞类型分辨率构建分子衰老时钟,随后我们使用 XAI 对其进行解释。我们将该框架应用于最大的单细胞转录组数据集之一,该数据集包含来自 981 名捐赠者的一百万多个免疫细胞,揭示了一个核糖体基因子网络,其表达与年龄无关,与细胞类型无关。将相同的 DL-XAI 框架应用于分类单核细胞的 DNA 甲基化数据,揭示了一种表观遗传失调的炎症反应途径,其活性随着年龄的增长而增加。我们表明,如果我们使用更标准的机器学习方法,就不会发现核糖体模块和炎症途径。总之,这里介绍的计算深度学习框架说明了深度学习与可解释的人工智能工具相结合如何揭示对复杂衰老过程的新颖生物学见解。
大脑计算机界面(BCI)应用提供了一种直接的方法,将人脑活动映射到外部设备的控制上,而无需进行物理运动。这些系统,对于医疗应用至关重要,也对非医疗应用程序有用,主要使用非侵入性记录的EEG信号,用于系统控制,并需要算法将信号转换为命令。传统的BCI应用程序在很大程度上取决于针对特定行为范式量身定制的算法,并使用具有多个通道的EEG系统来收集数据。这使可用性,舒适性和负担能力复杂化。更重要的是,广泛的培训数据集的有限可用性限制了将收集到的数据分类为行为意图的强大模型的开发。To address these challenges, we introduce an end-to-end EEG classification framework that employs a pre-trained Convolutional Neural Network (CNN) and a Transformer, initially designed for image processing, applied here for spatiotemporal represen- tation of EEG data, and combined with a custom developed automated EEG channel selection algorithm to identify the most informative electrodes for the process, thus reducing data dimensionality, and放松主题的舒适性,并改善了脑电图数据的分类性能到受试者的意图。我们使用两个基准数据集(EEGMMIDB和OpenMiir)评估了我们的模型。与现有的最新脑电图分类方法相比,我们取得了卓越的性能,包括常用的EEGNET。这项研究不仅可以推进BCI领域,而且还为BCI应用程序提供了一个可扩展和负担得起的框架。我们的结果表明,OpenMiir的分类精度提高了7%,EEGMMIDB的分类为1%,平均值分别达到81%和75%。重要的是,这些改进是通过较少的记录渠道和较少的培训数据获得的,这证明了一个框架,可以从培训数据的量以及大脑信号所需的硬件系统的简单性方面支持更有效的BCI任务方法。
由于依赖时间密集型且不可扩展的专家评估,脑瘫(CP)的早期鉴定仍然是一个重大挑战。因此,一系列研究旨在通过机器学习来预测基于运动跟踪的CP分数,例如从视频数据中。这些研究通常可以预测临床评分,这是CP风险的替代。但是,临床医生并不想估计分数,他们想估计患者患临床症状的风险。在这里,我们提出了一个数据驱动的机器学习(ML)管道,该管道从基于婴儿视频的运动跟踪中提取运动功能,并估算使用自动符号的CP风险。使用AutoSklearn,我们的框架通过抽象研究人员 - 驱动器超参数优化来最大程度地拟合过度适应的风险。接受了从3至4个月大的婴儿进行运动数据的培训,我们的分类器预测在持有的测试集中,ROC-AUC的高度指示性临床评分(General运动评估[GMA]),表明运动学运动特征临床相关的可变性。没有再培训,相同的模型可以预测在后来的临床随访中,ROC-AUC为0.74,脑瘫结局的风险,表明早期运动表现形式概括为长期神经发育风险。我们采用预注册的锁定箱验证来确保索具性能评估。本研究强调了自动驱动运动分析对神经发育筛查的潜力,这表明数据驱动的运动轨迹提取的特征可以为早期风险评估提供可解释且可扩展的方法。通过整合预先训练的视频变压器,自动驱动的模型选择和严格的验证协议,这项工作可以推进使用视频衍生的运动功能来用于可扩展的,数据驱动的临床评估,从而证明基于可用的数据(如婴儿)(如婴儿)的计算方法如何增强神经发育障碍的早期风险检测。
摘要。患者分层通过基于其分子和/或临床特征鉴定出不同的亚组,在个性化医学中起着至关重要的作用。但是,许多基于机器学习的分层技术无法识别与每个患者组相关的本质生物标志物特征。在本文中,我们提出了一种使用分层集合聚类来解释的患者分层的新方法。我们的方法利用具有与主成分分析(PCA)结合的采样,以捕获最重要的模式和贡献生物标志物。我们使用机器学习基准数据集和来自癌症基因组地图集(TCGA)的现实世界数据的方法的有效性,展示了检测到的患者簇的可解释性。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:与基于可分离的复杂希尔伯特空间的“经典”量子力学相比,该论文研究了量子信息后量子不可分性的理解。相应地“可区分性 /无法区分性”和“古典 /量子”的两个反对意义在量子不可区分性的概念中隐含可用,可以解释为两个经典信息的两个“缺失”位,这些信息将在量子信息传递后添加,以恢复初始状态。对量子不可区分性的新理解与古典(Maxwell-Boltzmann)与量子(Fermi-Dirac或Bose-Einstein)统计的区别有关。后者可以推广到波函数类(“空”量子量),并在希尔伯特算术中详尽地表示,因此可以与数学基础相连,更确切地与命题逻辑和设置理论的相互关系相互关联,共享了布尔代数和两种抗发码的结构。关键词:Bose-Einstein统计,Fermi-Dirac统计,Hilbert Arithmetic,Maxwell-Boltzmann统计,Qubit Hilbert Space,量子不可区分性,量子信息保存,Teleportation
IFRIC收到了有关实体如何向企业卖方付款的请求,如果这些付款是在卖方后的销售后付款中取决于卖方继续就业的情况的。基于收集的证据,IFRIC观察到,对于此类事实模式,实体应用了2013年1月出版的议程决定继续就业的会计,并将付款作为付款作为挑战后服务的赔偿,而不是作为购货币的其他考虑因素,除非服务条件不是实质性的。