5药物和生物化学系,德国图宾根大学的药物基因组学与药物研究中心,德国Tübingen * *通讯作者的关键字多尺度熵,神经发育,eeg,eeg,eeg,fnirs摘要,自然界的生物学系统,例如人类大脑,包括复杂的动力学和非网络动力学。 量化信号复杂性的一种方法是多尺度熵(MSE),它适用于在不同时间尺度下具有远距离相关的结构。 在发育神经科学中,MSE可以作为大脑成熟的指数,并可以区分健康和病理发展。 在我们目前的工作中,我们根据30个同时发生的EEG - 妊娠27至34周的胎龄(WGA)探索了MSE的发育趋势。 为了探索影响MSE的潜在因素,我们确定了MSE与EEG功率谱密度(PSD)与自发活性瞬变(SATS)之间的关系。 结果,通过WGA,在脑电图上计算出的MSE增加,因此反映了脑网络中的成熟过程,而在FNIRS中,MSE降低,这可能表明脑血液供应的成熟。 此外,我们建议Beta频段(13-30 Hz)中的EEG功率可能是EEG中MSE的主要贡献者。 最后,我们强调了SATS确定MSE的重要性,该MSE是从FNIRS记录中计算得出的。 突出显示生物系统显示复杂和非线性动力学。 使用多尺度熵(MSE),我们研究了早产婴儿的同时脑电图。5药物和生物化学系,德国图宾根大学的药物基因组学与药物研究中心,德国Tübingen * *通讯作者的关键字多尺度熵,神经发育,eeg,eeg,eeg,fnirs摘要,自然界的生物学系统,例如人类大脑,包括复杂的动力学和非网络动力学。量化信号复杂性的一种方法是多尺度熵(MSE),它适用于在不同时间尺度下具有远距离相关的结构。在发育神经科学中,MSE可以作为大脑成熟的指数,并可以区分健康和病理发展。 在我们目前的工作中,我们根据30个同时发生的EEG - 妊娠27至34周的胎龄(WGA)探索了MSE的发育趋势。 为了探索影响MSE的潜在因素,我们确定了MSE与EEG功率谱密度(PSD)与自发活性瞬变(SATS)之间的关系。 结果,通过WGA,在脑电图上计算出的MSE增加,因此反映了脑网络中的成熟过程,而在FNIRS中,MSE降低,这可能表明脑血液供应的成熟。 此外,我们建议Beta频段(13-30 Hz)中的EEG功率可能是EEG中MSE的主要贡献者。 最后,我们强调了SATS确定MSE的重要性,该MSE是从FNIRS记录中计算得出的。 突出显示生物系统显示复杂和非线性动力学。 使用多尺度熵(MSE),我们研究了早产婴儿的同时脑电图。在发育神经科学中,MSE可以作为大脑成熟的指数,并可以区分健康和病理发展。在我们目前的工作中,我们根据30个同时发生的EEG - 妊娠27至34周的胎龄(WGA)探索了MSE的发育趋势。为了探索影响MSE的潜在因素,我们确定了MSE与EEG功率谱密度(PSD)与自发活性瞬变(SATS)之间的关系。结果,通过WGA,在脑电图上计算出的MSE增加,因此反映了脑网络中的成熟过程,而在FNIRS中,MSE降低,这可能表明脑血液供应的成熟。此外,我们建议Beta频段(13-30 Hz)中的EEG功率可能是EEG中MSE的主要贡献者。最后,我们强调了SATS确定MSE的重要性,该MSE是从FNIRS记录中计算得出的。突出显示生物系统显示复杂和非线性动力学。使用多尺度熵(MSE),我们研究了早产婴儿的同时脑电图。EEG中 MSE在胎龄增加,FNIRS中的MSE降低。 eeg功率谱密度和自发活性瞬变有助于MSE。MSE在胎龄增加,FNIRS中的MSE降低。eeg功率谱密度和自发活性瞬变有助于MSE。
摘要。– 目的:8-羟基-2-脱氧鸟苷 (8-OH-2dG) 是氧化性 DNA 损伤的可测量生物标志物。本研究旨在确定健康足月孕妇和早产孕妇羊水中 8-OH-2dG 水平。为了揭示活性氧对 8-OH-2dG 水平的影响,还测量了羊水中总氧化能力 (TOS)、总抗氧化能力 (TAC) 和氧化应激指数 (OSI)。患者与方法:共 60 名患者参加了研究,其中 35 名足月妊娠患者和 25 名早产患者。妊娠 37 周前发生的分娩被视为自然早产。在剖宫产或正常阴道分娩期间从足月患者中采集羊水样本。采用酶联免疫吸附试验(ELISA)定量测定羊水中8-OH-2dG浓度,并测定羊水中总抗氧化能力(TAC)和总氧化能力(TOC)。结果:早产组羊水中8-OH-2dG水平明显高于足月组(60.8±7.02 ng/mL vs . 33.6±4.11 ng/mL,p < 0.01),早产组TOC水平也明显高于足月组(89.7±4.80 µmol/L vs . 54.3±6.60 µmol,p < 0.02)。足月组TAC显著高于早产组(1.87±0.10 mmol/L vs 0.97±0.44 mmol/L,p<0.01)。早产组OSI值显著高于足月组。足月组妊娠周龄与羊水8-OH-2dG水平呈显著负相关(r=-0.78,p<0.01)。足月组TAC与羊水8-OH-2dG水平呈显著负相关(r=-0.60,p<0.02)。足月组TOC、OSI与羊水8-OH-2dG水平也呈显著正相关。胎儿胎龄与OSI呈显著负相关,但不显著。
发育中的大脑必须适应极其早产(EPT)出生后的环境和内在侮辱。正在进行的成熟过程最大程度地适合环境,这可以为神经发育失败提供底物。静止状态功能磁共振成像用于扫描33名出生的EPT儿童,胎龄<27周,在10岁时进行了26个完美控制。我们研究了大脑区域传播神经信息(固有点火)及其跨时间的可变性(节点 - 测素)的能力。该框架是针对背部注意网络(DAN),Frontoparietal,默认模式网络(DMN)以及显着性,边缘,视觉和体感网络计算的。与对照组相比,EPT组在DMN和DAN中显示出固有的点火降低,并且在DMN,DAN和显着性网络中降低了淋巴结量。两组的固有点火和节点 - 渗透率值与12岁的认知性能相关,但在调整后仅在术语组中存活。早产扰乱了3个核心高级网络中休息的功能性脑组织的签名:DMN,显着性和DAN。在EPT诞生后识别脆弱的静止状态网络可能会导致旨在重新平衡大脑功能的干预措施。
1。Hee Chung E,Chou J,Brown KA。 早产儿的神经发育结果:最近的文献综述。 transl pediatr。 2020; 9(增刊1):3-S8。 doi:10.21037/tp.2019.09.10 2。 luu tm,Mian Mor,Nuyt AM。 早产的长期影响。 临床perinatol。 2017; 44(2):305-314。 doi:10.1016/j.clp.2017.01.003 3。 McGowan EC,VOHR BR。 早产儿的神经发育随访:什么是新的? 北部的Pediatr Clin。 2019; 66(2):509-523。 doi:10.1016/j.pcl.2018.12.015 4。 Cheong JL,Doyle LW,Burnett AC等。 2岁时,中度和晚期出生与晚期神经发育与社会情感发展之间的关联。 Jama Pediatr。 2017; 171(4):E164805。 doi:10.1001/jamapediatrics.2016.4805 5。 Anderson P,Doyle LW,维多利亚时代婴儿合作研究小组。 在1990年代出生的学龄儿童的神经行为结果极低或早产。 JAMA。 2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。Hee Chung E,Chou J,Brown KA。早产儿的神经发育结果:最近的文献综述。transl pediatr。2020; 9(增刊1):3-S8。doi:10.21037/tp.2019.09.10 2。luu tm,Mian Mor,Nuyt AM。早产的长期影响。临床perinatol。2017; 44(2):305-314。 doi:10.1016/j.clp.2017.01.003 3。 McGowan EC,VOHR BR。 早产儿的神经发育随访:什么是新的? 北部的Pediatr Clin。 2019; 66(2):509-523。 doi:10.1016/j.pcl.2018.12.015 4。 Cheong JL,Doyle LW,Burnett AC等。 2岁时,中度和晚期出生与晚期神经发育与社会情感发展之间的关联。 Jama Pediatr。 2017; 171(4):E164805。 doi:10.1001/jamapediatrics.2016.4805 5。 Anderson P,Doyle LW,维多利亚时代婴儿合作研究小组。 在1990年代出生的学龄儿童的神经行为结果极低或早产。 JAMA。 2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。2017; 44(2):305-314。doi:10.1016/j.clp.2017.01.003 3。McGowan EC,VOHR BR。早产儿的神经发育随访:什么是新的?北部的Pediatr Clin。2019; 66(2):509-523。 doi:10.1016/j.pcl.2018.12.015 4。 Cheong JL,Doyle LW,Burnett AC等。 2岁时,中度和晚期出生与晚期神经发育与社会情感发展之间的关联。 Jama Pediatr。 2017; 171(4):E164805。 doi:10.1001/jamapediatrics.2016.4805 5。 Anderson P,Doyle LW,维多利亚时代婴儿合作研究小组。 在1990年代出生的学龄儿童的神经行为结果极低或早产。 JAMA。 2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。2019; 66(2):509-523。doi:10.1016/j.pcl.2018.12.015 4。Cheong JL,Doyle LW,Burnett AC等。2岁时,中度和晚期出生与晚期神经发育与社会情感发展之间的关联。Jama Pediatr。2017; 171(4):E164805。 doi:10.1001/jamapediatrics.2016.4805 5。 Anderson P,Doyle LW,维多利亚时代婴儿合作研究小组。 在1990年代出生的学龄儿童的神经行为结果极低或早产。 JAMA。 2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。2017; 171(4):E164805。doi:10.1001/jamapediatrics.2016.4805 5。Anderson P,Doyle LW,维多利亚时代婴儿合作研究小组。 在1990年代出生的学龄儿童的神经行为结果极低或早产。 JAMA。 2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。Anderson P,Doyle LW,维多利亚时代婴儿合作研究小组。在1990年代出生的学龄儿童的神经行为结果极低或早产。JAMA。 2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。JAMA。2003; 289:3264-3272。 doi:10.1001/jama.289.24.3264 6。 Serenius F,KällénK,Blennow M等。 神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。 JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。2003; 289:3264-3272。doi:10.1001/jama.289.24.3264 6。Serenius F,KällénK,Blennow M等。神经发育范围是在瑞典活跃的perinatal护理后的2。5年后,出现了极早的婴儿。JAMA。 2013; 309(17):1810-1820。 doi:10.1001/ jama.2013.3786 7。 div> Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。 早产儿的早期环境和长期结局。 j神经传输(维也纳)。 2020; 127(1):1-8。JAMA。2013; 309(17):1810-1820。doi:10.1001/ jama.2013.3786 7。 div>Cheong Jly,Burnett AC,Treyvaud K,Spittle AJ。早产儿的早期环境和长期结局。j神经传输(维也纳)。2020; 127(1):1-8。doi:10.1007/s00702-019-02121-w
摘要 背景 MRI 可以详细评估早产儿的大脑结构,其效果优于头颅超声。基于 MRI 的早产儿新生儿脑体积可作为早期大脑发育的客观、定量和可重复的替代参数。迄今为止,尚无足月年龄早产儿脑体积的参考值。 目的 系统回顾文献,确定足月年龄极早产儿 MRI 脑体积的参考范围。 方法 于 2020 年 4 月 6 日在 PubMed 数据库中搜索基于 MRI 的脑体积研究,这些研究报告了在足月年龄(定义为 MRI 时平均月经后年龄为 37-42 周)检查的具有代表性的未经选择的极低出生体重婴儿群体的脑体积。分析仅限于 3 项以上研究中报告的体积参数。计算并模拟了每个参数的加权平均体积和 SD。 结果 最初确定了 367 篇出版物。根据排除标准,来自 8 个国家的 13 项研究被纳入分析,得出四个参数。总脑容量的加权平均值为 379 毫升(SD 72 毫升;基于 n=756)。小脑体积为 21 毫升(6 毫升;n=791),皮质灰质体积为 140 毫升(47 毫升;n=572),无髓鞘白质的加权平均体积为 195 毫升(38 毫升;n=499)。结论这项荟萃分析报告了多个大脑和小脑体积的汇总数据,可为未来评估基于 MRI 的体积参数作为神经发育替代结果的研究以及解释基于 MRI 的个体或群组体积发现提供参考。
摘要 引言 极度早产 (VPT) 婴儿可能会遇到不同程度的神经发育问题。缺乏神经发育障碍的早期标志物可能会延迟早期干预的转诊。详细的一般运动评估 (GMA) 可以帮助我们尽快识别生命早期有非典型神经发育临床表型风险的 VPT 婴儿的早期标志物。如果允许在关键的发育窗口进行早期精确干预,具有非典型神经发育结果高风险的早产儿将拥有最好的生命开端。方法与分析这是一项全国性的多中心前瞻性队列研究,将招募 577 名出生年龄 <32 周的婴儿。本研究将确定翻滚和烦躁年龄一般运动 (GM) 的发展轨迹的诊断价值,并通过格里菲斯发育量表-中文对 2 岁时不同的非典型发育结果进行定性评估。一般运动优化评分 (GMOS) 的差异将用于区分正常 (N)、较差的动作库 (PR) 和局促同步 (CS) 的 GM。我们计划建立每个全局 GM 类别的 N、PR 和 CS 中的 GMOS(中位数、第 10、第 25、第 75 和第 90 百分位数排名)的百分位数等级,并基于详细的 GMA 分析翻滚运动中的 GMOS 与烦躁运动中的运动优化评分 (MOS) 之间的关系。我们探索 GMOS 列表和 MOS 列表的子类别,这些子类别可能识别特定的早期标志物,帮助我们识别和预测 VPT 婴儿的不同临床表型和功能结果。伦理与传播复旦大学附属儿科医院研究伦理委员会已确认中央伦理批准(批准文号 2022(029)),并且招募地点的相应伦理委员会也已获得当地伦理批准。对研究结果进行批判性分析将有助于为早产儿的分级管理和精准干预提供依据。
Chakraborty,C.,Joung,J.,Foo,L.C.,Thompson,A.,Chen,C.,Smith,S.J。,&Barres,B。 A. (2013)。 星形胶质细胞通过MEGF10和MERTK途径介导突触消除。 自然,504(7480),394 - 400。https://doi.org/10.1038/nature12776 de Vis,J. B.,Hendrikse,J.,Groenendaal,F.,de Vries,L.S.,Kersbergen,K.J.,Benders,M.J。,&Petersen,E.T。(2014)。 新生儿血细胞比容变异性对血液的纵向松弛时间的影响:对动脉自旋标记MRI的影响。 Neuroimage Clin,4,517 - 525。https://doi.org/10.1016/j.nicl.2014.03.006 de Vis,J. B.,Petersen,E。T.,De Vries,L.S.,Groenendaal,F.,Kersbergen,K。J.,Alderliesten,T. (2013)。 在脑成熟过程中脑灌注的区域变化,在新生儿中,通过动脉自旋标记MRI进行了非侵入性测量。 欧洲放射学杂志,82(3),538 - 543。https://doi.org/10。 1016/j.ejrad.2012.10.013 Fyfe,K。L.,Yiallourou,S。R.,Wong,F。Y.,&Horne,R。S.(2014)。 Devel-Chakraborty,C.,Joung,J.,Foo,L.C.,Thompson,A.,Chen,C.,Smith,S.J。,&Barres,B。A.(2013)。星形胶质细胞通过MEGF10和MERTK途径介导突触消除。自然,504(7480),394 - 400。https://doi.org/10.1038/nature12776 de Vis,J.B.,Hendrikse,J.,Groenendaal,F.,de Vries,L.S.,Kersbergen,K.J.,Benders,M.J。,&Petersen,E.T。(2014)。新生儿血细胞比容变异性对血液的纵向松弛时间的影响:对动脉自旋标记MRI的影响。Neuroimage Clin,4,517 - 525。https://doi.org/10.1016/j.nicl.2014.03.006 de Vis,J.B.,Petersen,E。T.,De Vries,L.S.,Groenendaal,F.,Kersbergen,K。J.,Alderliesten,T.(2013)。在脑成熟过程中脑灌注的区域变化,在新生儿中,通过动脉自旋标记MRI进行了非侵入性测量。欧洲放射学杂志,82(3),538 - 543。https://doi.org/10。1016/j.ejrad.2012.10.013 Fyfe,K。L.,Yiallourou,S。R.,Wong,F。Y.,&Horne,R。S.(2014)。 Devel-1016/j.ejrad.2012.10.013 Fyfe,K。L.,Yiallourou,S。R.,Wong,F。Y.,&Horne,R。S.(2014)。Devel-
神经发育障碍是早产幸存者的重要并发症。为了改善预后,需要可靠的生物标志物来早期检测脑损伤和进攻评估。秘密神经素是成年人和患有围产期窒息的完整新生儿的脑损伤的早期生物标志物。目前缺乏关于早产儿的数据。这项试验研究的目的是确定在新生儿时期早产儿的秘密促肾上腺素蛋白浓度,并评估秘密塞里蛋白作为早产脑损伤的生物标志物的潜力。我们包括38名非常早产的婴儿(VPI),该研究中的妊娠32周。在48小时零3周的生命中,在从脐带获得的血清中测量了秘密神经素浓度。结局措施包括重复的脑超声检查,学期等级年龄的磁共振成像,一般运动评估和神经发育评估,在2岁时,婴儿的贝利(Bayley)尺度为2岁的婴儿和托德勒(Toddler)发展,第三版(Bayley-iiii)。与期限出生的参考人群相比,VPI在脐带血和血液中在48小时生命时收集的血液中具有较低的秘密神经蛋白血清浓度。在生命的3周下测量时,浓度与出生时的胎龄相关。soctionalin蛋白浓度在VPI之间没有差异,但是在脐带血液中进行测量,并且在生命的3周时与Bayley-III III运动和认知量表得分相关,并预测。VPI中的泌尿神经素水平与术语出生的新生儿不同。秘密神经素似乎不适合作为早产脑损伤的诊断生物标志物,但具有一些预后的潜力,值得作为早产脑损伤的血液生物标志物进行进一步研究。
1 中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian
版权所有©2023 Christiansen等。这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。