中央佛罗里达大学(UCF)是一个强大而支持性的创新生态系统的一部分,该生态系统已启动研究翻译。UCF与空间,航空航天,健康,国防部(光学和激光器,人工智能/机器学习/计算机视觉,数字双胞胎,仿真和建模),能源等领域有合作伙伴关系和合作。由于UCF已经产生了高水平的基础研究,因此加速UCF研究翻译将创造巨大的经济发展机会。因此,通过NSF加速研究翻译计划,UCF正在创建连接UCF生产并培训多样化人才的基础研究所需的基础架构。该项目将通过利用和建立佐治亚理工学院的机构指导来利用和建立现有基础设施来增强UCF的研究翻译能力。项目推力包括创建一个直接支持翻译的风险实验室,重组企业家支持组织,遵循佐治亚理工学院的高级模型,并扩大校园学生的教育和培训机会。
摘要 目的 . 脑机接口是开发免提、脑控设备的关键组件。脑电图 (EEG) 电极对于以非侵入性方式收集神经信号特别有吸引力。方法。在这里,我们探索使用在硅基碳化硅上生长的外延石墨烯 (EG) 来高灵敏度检测 EEG 信号。主要结果和意义。与商用干电极相比,这种干燥和非侵入性方法表现出显着改善的皮肤接触阻抗,以及卓越的稳健性,允许在高盐环境中长时间和重复使用。此外,我们报告了新观察到的 EG 电极表面调节现象。EG 与皮肤电解质的长时间接触使石墨烯的晶粒边界功能化,导致通过物理吸附形成薄薄的水表面膜,从而将其接触阻抗降低三倍以上。这种效果在高盐环境中尤为明显,也可以进一步定制为预处理,以提高 EG 传感器的性能和可靠性。
通过测量反射的环境无线电波,使其成为无源雷达和 LPI/D 无线电检测的理想选择,可用于包括空间领域感知和隐蔽检测与测距在内的广泛应用。RocketStar 首席技术官 Wes Faler 宣称:“Phoenix Eye™ 预示着数字信号处理的重大进步。”在阐述其变革潜力时,Wes 补充道:“我们利用先进的算法和人工智能超越了关键通信中曾经被认为是硬性限制的领域。借助 Phoenix Eye™,我们为用户提供了无与伦比的导航、通信和检测能力,具有无与伦比的准确性和可靠性。我们的技术为通信的新时代铺平了道路,以前的限制将不复存在。”RocketStar 首席执行官 Chris Craddock 强调了该技术的商业潜力,他表示:“Phoenix Eye™ 为各个行业打开了广阔的机遇之门,RocketStar 已准备好满足对复杂通信、反欺骗和传感解决方案日益增长的需求。”关于 RocketStar Inc.
橄榄油生产会产生大量的果渣,这些果渣通常被丢弃在土壤中,对农业和环境产生不利影响。此外,气候变化加剧了植物病害,并促进了有毒植物化学物质在农业中的使用。然而,橄榄磨坊废料具有作为可重复使用和宝贵的生物资源的巨大潜力。我们使用稀释乙醇(一种环保溶剂)提取了含有短和长寡半乳糖醛酸苷、短阿拉伯寡糖和多糖的级分。获得的提取物引发了拟南芥幼苗中植物先天免疫的关键特征,包括丝裂原活化蛋白激酶 MPK3 和 MPK6 的磷酸化以及防御基因(如 CYP81F2 、 WRKY33 、 WRKY53 和 FRK1 )的上调。值得注意的是,用橄榄果渣提取物对成年拟南芥和番茄植株进行预处理可启动防御反应,增强其对植物病原菌灰葡萄孢和丁香假单胞菌的抵抗力。我们的研究结果强调了在橄榄油生产后期收集的两相橄榄果渣在低成本和可持续的聚糖诱导剂中进行升级再造的机会,有助于减少化学合成农药的使用。
对侧mRNA covid-19增强抗体的幅度,以改善COVID-19 Vac-scine免疫反应,Fazli等人。的研究检查了在相同或对侧臂中施用助力剂量的影响(9)(图1)。与最近的一些发现(10)相反,当前的研究报告说,在先前使用初次疫苗的人中,辉瑞技术NT162B2促进了抗体反应的高幅度。在第三次疫苗接种后大约五个月后,在最后一个时间点分析了这种差异最为明显。notably,该研究的重点是中和抗体反应,包括针对Omicron变体的反应(B.1.1.529),揭示了具有对侧增强的增强抗体。较高的抗体水平也与改善变异菌株的跨义中和化有关(11),面对不断发展的病毒威胁,解决了至关重要的关注点。该研究的强大方法论涵盖了大型和彻底的参与者入学和人口统计分析,可以增强其发现的可靠性。这项工作为疫苗的优化提供了宝贵的见解
摘要 大数据的出现与人工智能技术的发展相结合,为自主和持续的决策支持提供了新的机会。虽然最初的研究已经开始探索人类道德如何为未来人工智能应用的决策提供信息,但这些方法通常认为人类道德是静态的和不可改变的。在这项工作中,我们从功利主义的角度初步探索了环境对人类道德的影响。通过一项在线叙事交通研究,参与者被引导到一个积极的故事、一个消极的故事或一个控制条件(N = 82),我们收集了参与者对必须在不断变化的环境中处理道德判断的技术的看法。基于对参与者反应的深入定性分析,我们将参与者的看法与公平性、问责制和透明度方面的相关工作进行对比。我们的工作强调了情境道德对人工智能的重要性,并通过基于 FACT(公平性、问责制、背景和透明度)的视角确定了未来工作的机会。
哺乳动物先天免疫反应具有称为“受过训练的免疫力”的一种记忆力(1)。训练免疫在疫苗功效中发挥的作用仍然未知。然而,受过训练的免疫力介导活衰减疫苗的非特异性保护作用,例如BCG疫苗对结核病的疫苗(2-5),已知可降低婴儿的全因死亡率(6-9)。发生这种情况是因为疫苗会诱导单核细胞的表观遗传和代谢重新布线,这使它们在随后刺激时会以增强的方式响应(2、3、10)。重要的是,这种作用超出了疫苗接种后的免疫激活的短时间框架,并且归因于骨髓造血干细胞壁细胞的变化,这导致粒细胞增强和髓样细胞的增强,这些细胞表现出表观遗传和代谢为训练的免疫疗法(5,11)。在COVID-19疫苗的随机临床试验中的比较表明,与基于mRNA的疫苗相比,基于腺病毒载体的疫苗可能具有非特异性保护作用,从而显着降低了全因死亡率和非covi剂,非促疾病的死亡率(12)。
SARS-COV-2大流行中的新变体更具传染性(alpha/delta),逃避中和抗体(beta)或两者(Omi-Cron)。这在疫苗开发中构成了挑战。我们设计了一种更普遍的SARS-COV-2 DNA疫苗,其中包含了Hucov-19 /WH 01,Alpha和beta变体的受体结合结构域环,结合了膜和核蛋白。疫苗诱导的尖峰抗体 - Hucov-19 /WH 01,β和三角洲峰值蛋白之间的活性,它们在体外中和Hucov-19 /WH 01,Beta,Delta和Omicron病毒。与峰值特异性T细胞不同,疫苗启动核蛋白特异性T细胞公认的BAT-COV序列。携带人ACE 2受体的疫苗保护的小鼠免受SARS-COV-2β变种的致命感染。有趣的是,单独的交叉反应性核蛋白特异性T细胞的启动是60%的表现,从人类中验证了T细胞预防致命疾病的人类的观察结果。这种SARS-COV疫苗诱导了一种独特的宽阔和功能性免疫,从而增加了当前使用的疫苗。
Epibond ® 200 A 树脂 50 1 Epibond ® 200 B 硬化剂 50 1 待粘合基材应经过适当的表面处理并且不含任何污染物。将两种组分充分混合几分钟直至获得均匀的混合物,或从 1:1 200ml 或 50ml 双筒筒中分配。对于 200 mL 尺寸,使用 TAH 10 毫米直径 x 24 元件螺旋混合喷嘴或同等产品。对于 50 mL,使用 Mixpac™ B 系统 06 毫米直径 x 20 元件螺旋混合喷嘴或同等产品。应用将混合的粘合剂用抹刀涂抹到经过适当预处理的干燥接头表面上。厚度为 0.004 至 0.012 英寸(0.1 至 0.3 毫米)的粘合剂层通常可提供最大的搭接剪切强度。然而,这种粘合剂的设计效果可达 0.12 英寸(3 毫米)厚。一旦涂抹粘合剂,应立即组装和夹紧要粘合的部件。固化期间整个接合区域均匀的接触压力将确保最佳性能。处理强度通过在室温下用 PPA 和涂底漆的铝进行搭接剪切强度测量,单位为 psi (MPa)
通过神经元修剪编辑的模型编辑进展,对从大语言模型中删除不良概念的承诺有望。尚不清楚模型是否具有编辑后重新修剪概念的能力。为了调查这一点,我们通过跟踪重新培训的修剪神经元的概念显着性和相似性来评估模型中的重新学习。我们的发现表明,模型可以通过将高级概念重新定位到早期的外行者,并将修剪的概念重新恢复到具有相似语义的启动神经元,从而快速恢复性能。这种恶魔表明,模型表现出多性性的能力,并且可以在单个神经元中融合旧概念和新概念。虽然神经元修剪将可解释性转化为模型概念,但我们的结果突显了永久概念删除以改善模型安全性的挑战。监视概念的重新出现和开发技术以减轻不安全概念的重新学习将是更强大的模型编辑的重要方向。总的来说,我们的工作强烈证明了LLMS概念删除的概念表示的韧性和流动性。