3D 打印,也称为增材制造,代表了一系列技术,这些技术使用数字图像文件(通常由计算机辅助设计 (CAD) 软件生成)通过逐层沉积过程创建 3D 对象。随着 3D 打印在过去四十年的发展,许多增材制造技术概念已经发展成为强大的独立技术,正如美国材料与试验协会 (ASTM) 国际增材制造技术委员会 F42 所定义。目前这些技术包括:桶式光聚合、粉末床熔融、材料挤出、材料喷射、粘合剂喷射、定向能量沉积和薄片层压(ASTM International,2022 年)。商用打印机将这些工程概念应用于特定应用和材料,已在各个行业中占有一席之地,每个行业都有自己的优缺点,价格也大不相同。尽管打印技术方法多种多样,但目前最广泛使用的 3D 打印机(包括消费市场)采用的是一种熔融沉积成型 (FDM) 技术,有时也称为熔融长丝制造 (FFF) 技术,该技术基于热塑性材料的挤出,热塑性材料通过加热的长丝喷嘴沉积后会变硬。就材料沉积过程而言,FDM/FFF 是一种基于挤出的打印方法,不同于其他通过液体基质的光聚合或粉末颗粒的熔合来构建结构的方法。总体而言,3D 打印如今被认为是一种有效的技术,适用于需要少量生产高度定制和定制的产品,通常以分散的方式生产,例如在偏远地区生产备件,因为它节省了设计特定制造流程来制造产品以及供应物流的成本和时间。此外,在设计、艺术和时尚领域,3D 打印机已经找到了创造独特复杂设计的空间(Gebhardt 等人,2018 年;Shahrubudin 等人,2019 年)。
此前,研究人员使用丙烯酸树脂,通过 CAL 工艺生产出易碎易碎的物体。然而,通过精心平衡三种不同类型的分子而产生的新树脂化学性质更加灵活,为研究人员提供了灵活的设计空间和更广泛的机械性能。利用硫醇-烯树脂,研究人员能够使用 LLNL 的定制 VAM 打印机制造出坚韧、坚固、可拉伸且柔韧的物体。这项研究最近发表在《先进材料》杂志上,并在《自然》杂志上重点报道。
简介牙科技术中数字技术的演变已迎来了假体的新的精确,定制和EF的新时代。从3D打印到4D,5D和6D打印的更先进的概念,这些技术正在改变牙科专业人员的设计,2制造和交付假肢设备的方式。假肢专注于恢复和替换受损或缺失的牙齿,通过整合增材制造3种技术,尤其是3D打印,已经看到了重大变化。这场革命已经使假肢,定制解决方案的生产更快,并提高了4个精度。但是,下一个前沿在于4D,5D和6D打印的应用,这有望在假肢护理中增加更复杂的和功能。
本文考虑了通过热塑性材料挤出和聚合物粉末床熔合来 3D 打印锂离子电池的能力。重点研究了由聚丙烯、LiFePO 4 作为活性材料和导电添加剂组成的正极配方,从电化学、电气、形态和机械角度彻底讨论了这两种增材制造技术的优缺点。基于这些初步结果,提出了进一步优化电化学性能的策略。通过全面的建模研究,与经典的二维平面设计相比,强调了各种复杂的三维锂离子电池结构在高电流密度下的增强电化学适用性。最后,研究了通过多材料打印选项工艺直接打印完整锂离子电池的能力。
Alec Jeffreys爵士于1984年引入的DNA指纹识别是一种用于确定个人独特DNA特征的技术。它涉及将DNA从人体的任何部位分离出来,用限制酶切割它,使用琼脂糖凝胶电泳分离碎片,通过Southern印迹将DNA转移到尼龙薄片上,增加放射性探针,并通过自显影可视化结果。DNA指纹的关键步骤包括从源中提取DNA,将DNA切成片段,将这些片段分离在凝胶上,然后将其转移到尼龙片中。放射性探针用于添加标记,以突出DNA中核苷酸的特定序列。放射自显影用于可视化这些结果。DNA指纹识别有四个主要应用:解决亲子关系争端,诊断出遗传性疾病,例如囊性纤维化或镰状细胞性贫血,通过血液或精液污渍识别罪犯,并确定战争中杀害的士兵的尸体。由于每个人的DNA的独特性,该技术在争议中被认为是最有效的。DNA指纹识别解释的DNA指纹识别(也称为DNA分析或DNA键入)是一种用于确定个体中DNA重复区域的独特核苷酸序列的技术。这种方法首先由威廉·赫歇尔爵士在1858年用于识别目的。但是,直到1984年,Alec Jeffreys博士在莱斯特大学发明了DNA指纹技术,后来帮助解决了谋杀案和亲子关系纠纷。3人类谱系 - 研究人类谱系。DNA指纹背后的科学涉及确定基因之间发现的重复性DNA序列的独特模式,即被称为可变数字串联重复序列(VNTR)。这些序列具有高度多态性,这意味着它们在个体中差异很大。该技术基于以下原理:除了相同的双胞胎外,没有两个人共享相同的DNA序列。Key aspects of DNA fingerprinting include: - Repetitive DNA: regions where small stretches of DNA sequences are repeated multiple times - Satellite DNA: non-coding regions that form a large part of the human genome and show high polymorphism - Polymorphism: variations at the genetic level due to mutations, playing a crucial role in evolution and speciation - Variable Number of Tandem Repeats (VNTR): short DNA sequences with a high degree of polymorphism, used as genetic markers - Single Nucleotide Polymorphisms (SNPs): variations in DNA sequences where a single nucleotide differs from the normal sequence in at least one percent of the population The principles of DNA fingerprinting involve analyzing the unique combination of DNA sequences found in individuals and identifying short nucleotide repeats that vary in number.该技术用于分析在生物材料中发现的DNA,并基于以下理论:除了相同的双胞胎外,没有两个人共享相同的DNA序列。在RFLP中,首先从细胞中提取DNA,然后通过限制酶碎片。4DNA指纹识别的步骤包括:一种分离的DNA - 这涉及通过离心从细胞中提取的化学纯化DNA。b扩增 - 一种称为PCR的技术乘以提取的DNA拷贝。ans:1。使用限制性核酸内切酶对DNA的消化 - 酶在特定点将DNA分解为片段,产生不同的长度。d分离DNA-通过电泳通过大小分离,这种方法使用电场将带电分子分离。e添加化学物质将DNA片段分成单链。f转移(印迹)使用Southern印迹将DNA片段从凝胶分离到尼龙膜上。g杂交DNA片段与放射性标记的探针进行检测。h自显影术检测到杂交DNA,揭示了反映DNA组成的光和暗带的独特模式。DNA指纹具有各种应用:1个个性 - 除了单卵双胞胎以外,一个人与另一个人与另一个人区分开。2父亲纠纷或产妇争端 - 找到真正的遗传母亲,父亲和后代。4遗传疾病 - 识别与遗传性疾病有关的基因。5取证 - 有助于检测犯罪和法律追求。6社会学 - 确定种族群体,起源,历史移民和入侵。DNA指纹识别是一种识别某些DNA区域中独特的核苷酸序列的技术。它也称为DNA分析,遗传指纹识别,身份测试,基因分型,法医遗传学或DNA键入。人类的独特性在于他们的DNA指纹,除了单卵双胞胎外,没有两个人相同。该技术有助于将一个人与另一个人区分开,解决产妇和亲子关系纠纷并调查刑事案件。DNA指纹的基础依赖于短的核苷酸重复,这些重复的数量因人而异,但被遗传为遗传,称为可变数量串联重复序列(VNTRS)。它还有助于确定遗传性疾病的原因。Q.1:DNA指纹的原理是什么? ans:DNA指纹的最关键需求是短核苷酸重复的重复,其数量因人而异,但遗传为遗传,称为VNTR。 Q.2:DNA指纹的六个步骤是什么? DNA的隔离; 2。 放大DNA并将其切成小片段; 3。 通过凝胶电泳分离DNA片段; 4。 将分离的DNA片段转移到合成膜上; 5。 使用放射性标记的探针杂交;和6。 检测杂交DNA片段。 Q.3:DNA指纹的应用是什么? ans:它有助于将一个人与另一个人区分开,除了单卵双胞胎。确定真正的遗传母亲,父亲和后代;研究人血统;并将基因与遗传疾病联系起来。 Q.4:DNA指纹的父亲是谁? ans:Alec Jeffreys博士被称为DNA指纹的父亲。 Q.5:为什么它称为DNA指纹识别? ans:DNA指纹是一种独特的模式,可以与其他个体的模式区分开来,从而成为识别两个个体之间的相似性和差异的有效方法。 DNA指纹(DNA分析)是Alec Jeffreys于1985年开发的一种技术。Q.1:DNA指纹的原理是什么?ans:DNA指纹的最关键需求是短核苷酸重复的重复,其数量因人而异,但遗传为遗传,称为VNTR。Q.2:DNA指纹的六个步骤是什么? DNA的隔离; 2。 放大DNA并将其切成小片段; 3。 通过凝胶电泳分离DNA片段; 4。 将分离的DNA片段转移到合成膜上; 5。 使用放射性标记的探针杂交;和6。 检测杂交DNA片段。 Q.3:DNA指纹的应用是什么? ans:它有助于将一个人与另一个人区分开,除了单卵双胞胎。确定真正的遗传母亲,父亲和后代;研究人血统;并将基因与遗传疾病联系起来。 Q.4:DNA指纹的父亲是谁? ans:Alec Jeffreys博士被称为DNA指纹的父亲。 Q.5:为什么它称为DNA指纹识别? ans:DNA指纹是一种独特的模式,可以与其他个体的模式区分开来,从而成为识别两个个体之间的相似性和差异的有效方法。 DNA指纹(DNA分析)是Alec Jeffreys于1985年开发的一种技术。Q.2:DNA指纹的六个步骤是什么?DNA的隔离; 2。 放大DNA并将其切成小片段; 3。 通过凝胶电泳分离DNA片段; 4。 将分离的DNA片段转移到合成膜上; 5。 使用放射性标记的探针杂交;和6。 检测杂交DNA片段。 Q.3:DNA指纹的应用是什么? ans:它有助于将一个人与另一个人区分开,除了单卵双胞胎。确定真正的遗传母亲,父亲和后代;研究人血统;并将基因与遗传疾病联系起来。 Q.4:DNA指纹的父亲是谁? ans:Alec Jeffreys博士被称为DNA指纹的父亲。 Q.5:为什么它称为DNA指纹识别? ans:DNA指纹是一种独特的模式,可以与其他个体的模式区分开来,从而成为识别两个个体之间的相似性和差异的有效方法。 DNA指纹(DNA分析)是Alec Jeffreys于1985年开发的一种技术。DNA的隔离; 2。放大DNA并将其切成小片段; 3。通过凝胶电泳分离DNA片段; 4。将分离的DNA片段转移到合成膜上; 5。使用放射性标记的探针杂交;和6。检测杂交DNA片段。Q.3:DNA指纹的应用是什么? ans:它有助于将一个人与另一个人区分开,除了单卵双胞胎。确定真正的遗传母亲,父亲和后代;研究人血统;并将基因与遗传疾病联系起来。 Q.4:DNA指纹的父亲是谁? ans:Alec Jeffreys博士被称为DNA指纹的父亲。 Q.5:为什么它称为DNA指纹识别? ans:DNA指纹是一种独特的模式,可以与其他个体的模式区分开来,从而成为识别两个个体之间的相似性和差异的有效方法。 DNA指纹(DNA分析)是Alec Jeffreys于1985年开发的一种技术。Q.3:DNA指纹的应用是什么?ans:它有助于将一个人与另一个人区分开,除了单卵双胞胎。确定真正的遗传母亲,父亲和后代;研究人血统;并将基因与遗传疾病联系起来。Q.4:DNA指纹的父亲是谁? ans:Alec Jeffreys博士被称为DNA指纹的父亲。 Q.5:为什么它称为DNA指纹识别? ans:DNA指纹是一种独特的模式,可以与其他个体的模式区分开来,从而成为识别两个个体之间的相似性和差异的有效方法。 DNA指纹(DNA分析)是Alec Jeffreys于1985年开发的一种技术。Q.4:DNA指纹的父亲是谁?ans:Alec Jeffreys博士被称为DNA指纹的父亲。Q.5:为什么它称为DNA指纹识别?ans:DNA指纹是一种独特的模式,可以与其他个体的模式区分开来,从而成为识别两个个体之间的相似性和差异的有效方法。DNA指纹(DNA分析)是Alec Jeffreys于1985年开发的一种技术。它基于在DNA中发现的重复序列,该序列在密度梯度离心过程中与大量基因组DNA分离。这种分离形成了一种唯一的峰值模式,称为卫星DNA,基于基础组成,段的长度和重复单位的数量,被归类为微卫星,迷你 - 卫星等。可变数字串联重复序(VNTR)属于迷你 - 卫星DNA,并且针对每个人,大小从0.1到20 kb不等。vntr拷贝数在每个染色体上的父亲和产妇等位基因之间有所不同,使其成为每个人的唯一标识符。DNA多态性在进化和物种过程中起着至关重要的作用。DNA指纹技术涉及多个关键步骤,包括从各种来源分离出DNA,例如细胞,血迹或唾液,然后消化,并具有限制性核酸内切核酸酶,通过凝胶电泳分离片段,并将其转移到合成膜上。接下来,使用带有放射性标记的VNTR探针进行杂交,从而导致自显影图显示黑暗和光带。这种独特的模式称为DNA指纹,除了单卵双胞胎的情况外,每个人都不同。可以使用聚合酶链反应(PCR)增强该技术的灵敏度,从而从单个细胞中启用DNA分析。DNA指纹的应用是多种多样的,并将其用作法医工具来解决诸如亲子纠纷,强奸或谋杀之类的犯罪。它还有助于诊断遗传疾病,确定动物的系统发育状况以及评估人口和遗传多样性。
三维(3D)印刷已迅速成为骨科手术中的变革力量,从而实现了高度定制和精确的医疗植入物和手术工具的创建。本综述旨在为新兴的3D打印技术提供更加系统和全面的观点 - 从基于挤出的方法和生物互联的印刷到粉末床融合,以及包括生物活性剂和含细胞的墨水阵列的扩展材料。我们强调了这些技术和材料如何用于制造患者特异性植入物,手术指南,假肢和先进的组织工程支架,显着增强的手术结果和患者康复。尽管取得了显着进展,但领域仍面临挑战,例如优化机械性能,确保结构完整性,解决不同地区之间的监管复杂性,并考虑环境影响和成本障碍,尤其是在低资源环境中。展望未来,智能材料和功能分级材料(FGM)的创新,以及生物打印方面的进步,对克服这些障碍并扩大了骨科中3D打印的能力有望。这篇评论强调了跨学科合作和正在进行的研究在利用增材制造的全部潜力方面的关键作用,最终为更有效,个性化和耐用的骨科解决方案铺平了道路,从而提高了患者的生活质量。
老芒麦是一种优良的饲草和生态修复草,在草原生态建设和畜牧业可持续发展中发挥着重要作用。中国老芒麦野生种质资源丰富,相似和对比的气候条件塑造了不同的种群,丰富了老芒麦的遗传多样性。为了更全面、低成本地聚合老芒麦种质资源,更精准地利用其遗传变异,本研究对老芒麦核心种质资源收集及利用单核苷酸多态性(SNP)标记进行指纹分析进行了初步探索。通过多种评价指标结合加权处理,从90份野生老芒麦样品中成功鉴定出36份材料作为核心种质。 36个核心种质样品的遗传多样性评估、等位基因评估和主成分分析均表明这36个样品准确、全面地代表了90份老麦种质的遗传多样性。另外,从90份老麦样品全基因组测序产生的高质量SNP位点中,鉴定出290个SNP位点作为候选标记,其中52个SNP位点被筛选为老麦DNA指纹分析的核心标记。并利用竞争性等位基因特异PCR(KASP)技术,基于这些核心标记对60份野生老麦种质进行了居群起源鉴定。本研究筛选出的核心SNP标记能够准确区分来自青藏高原和其他地区的老麦种质资源,为老麦种质资源的继续收集和鉴定提供参考,也为老麦种质资源的保存和利用提供科学依据。
Brightbio®细丝是从大自然自己的可再生单体和聚合物,工业侧面和天然颜色的化学修饰的,通过化学修饰的,交联的聚酯。可根据自然染料来量身定制的颜色。
摘要:简介。多发性骨髓瘤(MM)是B细胞肿瘤,其特征是骨row(BM)室中恶性血浆细胞(MM细胞)的克隆膨胀。新诊断的MM患者的 BM间充质基质细胞(MSC)与MM发病机理和化学抗性有关。 患者表现出明显的转录组,在功能上与健康捐助者(HD)MSC不同。 我们的目的是确定MM – MSC是否也有助于复发。 方法。 在诊断后两年,我们在诊断中获得并表征了患者的MSC样本,而无需复发和复发。 结果。 转录组分析表明,无论疾病的阶段如何,HD和MM-MSC之间的基因表达差异。 即使在表现出完全反应治疗的患者中,也观察到以骨抑制性为代价的脂肪形成的差异更容易。 尽管它们的转录组相似,但我们发现,与缓解患者相比,复发患者的MSC具有增加的免疫抑制能力。 结论。 我们证明,在MM诊断时证明的MSC转录组的印记,即使在治疗诱导的MM细胞明显消失之后,也持续存在,这表明维持有利于复发的局部情况。BM间充质基质细胞(MSC)与MM发病机理和化学抗性有关。患者表现出明显的转录组,在功能上与健康捐助者(HD)MSC不同。我们的目的是确定MM – MSC是否也有助于复发。方法。在诊断后两年,我们在诊断中获得并表征了患者的MSC样本,而无需复发和复发。结果。转录组分析表明,无论疾病的阶段如何,HD和MM-MSC之间的基因表达差异。即使在表现出完全反应治疗的患者中,也观察到以骨抑制性为代价的脂肪形成的差异更容易。尽管它们的转录组相似,但我们发现,与缓解患者相比,复发患者的MSC具有增加的免疫抑制能力。结论。我们证明,在MM诊断时证明的MSC转录组的印记,即使在治疗诱导的MM细胞明显消失之后,也持续存在,这表明维持有利于复发的局部情况。