通过分析主要火灾因素来确定森林火灾概率水平,可以为森林经理提供对诸如防火策略,燃油管理,消防安全措施,紧急计划以及消防团队安置等问题做出关键决策的基础。主要影响火灾因素,包括植被因素,地形因素,气候因素以及与某些特征(如道路和住宅区)的邻近性,被认为是产生森林火灾概率图。机器学习(ML)算法已成为预测森林射击概率的有效工具。这项研究旨在通过使用与地理信息系统(GIS)Tech Niques集成的两个常用ML模型(LR)和支持向量机(SVM)来生成森林火灾概率图。这项研究是在位于Türkiye的地中海城市安塔利亚市的Elale Forest Enterprise Enterprise(FEC)实施的。在研究中,影响火灾的因素是树种,冠状,树阶段,坡度,方面以及通往道路的距离。 在模型的训练阶段考虑了从2001年至2021年在FEC中发生的森林大火。 使用曲线(AUC)值的区域(AUC)值验证了火灾概率图的精度。 由于执行ML模型,在地图上进行了47 086点的估计,该估计分为五个火灾概率水平(非常高,高,中,中,低和非常低)。 根据概率图,超过一半的森林在研究区域具有很高/高的火灾概率水平。在研究中,影响火灾的因素是树种,冠状,树阶段,坡度,方面以及通往道路的距离。在模型的训练阶段考虑了从2001年至2021年在FEC中发生的森林大火。使用曲线(AUC)值的区域(AUC)值验证了火灾概率图的精度。由于执行ML模型,在地图上进行了47 086点的估计,该估计分为五个火灾概率水平(非常高,高,中,中,低和非常低)。根据概率图,超过一半的森林在研究区域具有很高/高的火灾概率水平。结果表明,LR模型生成的火概率图的准确性更好(AUC = 0.845),比SVM模型生成的MAP的准确性(AUC = 0.748)。
氢是一种光明的能源载体,对于脱碳和应对气候变化至关重要。这种能源发展涉及多个领域,包括电力备用系统,以便在停电期间为优先设施负载供电。由于建筑物现在集成了复杂的自动化、家庭自动化和安全系统,能源备用系统引起了人们的兴趣。基于氢的备用系统可以在多日停电的情况下供电;但是,备用系统的大小应适当,以确保基本负载的生存和低成本。从这个意义上讲,这项工作提出了一种使用停电历史的低压 (LV) 建筑燃料电池 (FC) 备用系统的尺寸。历史数据允许拟合概率函数以确定负载的适当生存。建议的尺寸应用于带有光伏发电系统的大学建筑作为案例研究。结果表明,在通常的 330 分钟停电情况下,安装的 FC 电池备用系统的尺寸比仅使用电池的系统便宜 7.6%。如果发生异常的 48 小时停电情况,则可节省 59.3%。它确保在停电期间有 99% 的概率供应基本负载。它证明了 FC 备用系统在应对长时间停电和集成电池以支持突然的负载变化方面的相关性。这项研究的重点是使用实际停电的历史数据来定义具有总服务概率的基本负载的生存。它还可以确定非优先负载的充分生存。所提出的尺寸适用于其他建筑物,并可以量化备用系统的可靠性,以增强电气系统的弹性。
摘要 – 硬件冗余是一种众所周知的容错技术,用于安全和任务关键型系统。然而,这种技术的强化效率依赖于多数表决电路的稳健性。本摘要提供了用于辐射环境(例如太空任务)的多数表决架构的设计探索。提出了一种基于信号概率的特定应用单事件瞬态 (SET) 特性,以优化三模冗余 (TMR) 块插入方法。结果表明,复杂门架构的 SET 横截面表现出较低的输入依赖性,而对于基于 NOR/NAND 的架构,由于逻辑掩蔽效应,观察到更高的依赖性。此外,与其他架构不同,NAND 表决器显示,随着信号概率的增加,SET 率会降低。考虑到信号概率 p = 0.1、p = 0.5 和 p = 0.9,两个分析轨道的最佳设计分别是 NOR、CMOS1 和 NAND 表决器。
摘要 – 硬件冗余是一种众所周知的容错技术,用于安全和任务关键型系统。然而,这种技术的强化效率依赖于多数表决电路的稳健性。本摘要提供了用于辐射环境(例如太空任务)的多数表决架构的设计探索。提出了一种基于信号概率的特定应用单事件瞬态 (SET) 特性,以优化三模冗余 (TMR) 块插入方法。结果表明,复杂门架构的 SET 横截面表现出较低的输入依赖性,而对于基于 NOR/NAND 的架构,由于逻辑掩蔽效应,观察到更高的依赖性。此外,与其他架构不同,NAND 表决器显示,随着信号概率的增加,SET 率会降低。考虑到信号概率 p = 0.1、p = 0.5 和 p = 0.9,两个分析轨道的最佳设计分别是 NOR、CMOS1 和 NAND 表决器。
使用改进的序贯概率比检验进行共振成像 Sarah JA Carr 1,2 、Weicong Chen 3 、Jeremy Fondran 4 、Harry Friel 5 、Javier Sanchez-Gonzalez 6 、Jing Zhang 4 和 Curtis Tatsuoka 4,2,* 1. 英国伦敦国王学院精神病学、心理学和神经科学研究所神经影像学系 2. 美国俄亥俄州克利夫兰凯斯西储大学神经病学系 3. 美国俄亥俄州克利夫兰凯斯西储大学计算机与数据科学系 4. 美国俄亥俄州克利夫兰凯斯西储大学人口与定量健康科学系 5. 美国俄亥俄州高地黑兹飞利浦医疗集团 6. 西班牙马德里飞利浦医疗集团 *通讯作者:Curtis Tatsuoka 10900 Euclid Avenue 凯斯西储大学克利夫兰, OH,美国 44106 电子邮件:cmt66@case.edu 关键词:实时 fMRI、自适应 fMRI、动态实验、SPRT、提前停止 摘要简介:功能性磁共振成像 (fMRI) 通常需要较长的扫描时间以确保可以检测到相关的大脑活动。然而,过度的实验会导致许多不良影响,例如学习和/或疲劳影响、受试者不适、过多的运动伪影以及无法持续关注任务。因此,过长的实验会对信号质量和准确的体素激活检测产生不利影响。在这里,我们建议使用一种新颖的统计驱动方法对实时 fMRI 进行动态实验,当观察到足够的统计证据来评估与任务相关的激活时,该方法会提前停止。方法:对 12 名健康青少年受试者和 11 名极度早产 (EPT) 青少年受试者的数学 1-back 任务的 fMRI 扫描实施基于一般线性模型 (GLM) 的体素级序贯概率比检验 (SPRT) 统计数据。该方法基于似然比,并允许基于统计误差阈值进行系统性早期停止。我们采用两阶段估计方法,可以准确估计误差方差。报告了不同第一阶段长度的早期停止性能,并将激活结果与完整持续时间进行比较。最后,对两个早期停止的模型进行组比较
摘要:本文重点研究了针对具体哈希函数的专用量子碰撞攻击,目前此类攻击尚未引起太多关注。在经典环境下,查找 n 位哈希函数碰撞的一般复杂度为 O(2 n/ 2),因此基于差分密码分析的经典碰撞攻击(如反弹攻击)会以高于 2 − n/ 2 的概率构建差分轨迹。同理,通用量子算法(如 BHT 算法)会以复杂度 O(2 n/ 3) 找到碰撞。利用量子算法,可以以复杂度 p − 1 / 2 生成一对满足概率 p 的差分轨迹的消息。因此,在量子环境下,一些在经典环境下无法利用的概率高达 2 − 2 n/ 3 的差分轨迹可能会被利用来在量子环境下发起碰撞攻击。特别是,被攻击的轮数可能会增加。在本文中,我们攻击了两个国际哈希函数标准:AES-MMO 和 Whirlpool。对于 AES-MMO,我们提出了一个概率为 2-80 的 7 轮差分轨迹,并使用它来查找与反弹攻击的量子版本的碰撞,而在经典设置中只能攻击 6 轮。对于 Whirlpool,我们基于经典反弹区分器的 6 轮差分轨迹发起碰撞攻击,其复杂度高于生日界限。这将 5 轮的最佳经典攻击提高了 1。我们还表明,这些轨迹在我们的方法中是最佳的。我们的结果有两个重要含义。首先,似乎存在一个普遍的信念,即经典安全的哈希函数将保持对量子对手的安全性。事实上,NIST 后量子竞赛中的几个第二轮候选人使用现有的哈希函数(例如 SHA-3)作为量子安全函数。我们的结果推翻了这种普遍的看法。其次,我们的观察表明,差分线索搜索不应以概率 2 − n/ 2 停止,而应考虑最多 2 − 2 n/ 3 。因此,值得重新审视以前的差分线索搜索活动。
课程背景 统计力学解释热力学并能够根据分子计算材料特性。 当热力学刚刚发展起来时,人们并不知道物质是由分子组成的!因此,热力学定律的起源也是未知的。 (1) 热力学并没有告诉我们定义材料的状态函数是什么,E(S,V,N) 还是 F(T,V,N) 还是 G(T,P,N) 还是 H(S,P,N) 等。这些函数是热力学定律的输入数据,必须针对每种材料进行测量。我们不能使用热力学来计算这些函数。 (2) 热力学也没有基本的微观基础——它基于经验假设。第二定律和熵特性的存在基于经验假设,通常是“热量不会自发地从一个物体流向另一个更热的物体。”为什么这是真的?热力学无法回答这个问题。统计力学给出了答案,而且非常简单。1874 年,奥地利物理学家路德维希·玻尔兹曼 (Ludwig Boltzmann) 提出了著名的熵假说,将宏观(热力学)世界与微观世界联系起来:𝑆= 𝑘 𝐵 𝑙𝑛 Γ 。其中 Γ 是可能状态的数量(与约束条件一致),𝑘 𝐵 是玻尔兹曼常数。因此,我们所要做的就是计算分子可能处于多少种状态,这就可以得出熵(从中可以得到所有其他热力学函数,如 F、G、H、Ω )。因此,如果分子是已知的(因此它们的相互作用也是已知的,等等),那么就可以得到所有的热力学函数,并且可以预测所有材料在不同过程中的性质和行为。第二定律 ΔS 宇宙 > 0 是玻尔兹曼假设的必然结果,也是合乎逻辑的。很明显,这一定律完全是材料分子性质的结果。它解释了时间之箭,这是牛顿和量子力学基本自然定律中缺失的,这些定律表现出 t→-t 不变性(想象一下台球桌上两个球的碰撞——如果你倒着播放这部电影,你不会知道,因为牛顿定律仍然适用)。基于分子的工程设计。因此,统计力学提供了微观和宏观、分子世界和材料世界之间的联系。因此,它为现代分子工程时代打开了大门,这是化学工程的现在和未来的核心。统计力学使我们能够设计分子(甚至构建全新的分子,如聚合物),这些分子将构成具有所需特性的新材料,构建利用分子应用于传感和其他新技术的纳米级设备,或了解活细胞中的分子机制,从而指导疾病的治疗和预防。统计分析的计算技术。当然,统计力学是关于统计学。它是统计分析的科学,其概念和工具旨在分析和理解涉及大量变量的复杂随机过程。当今用于解决涉及大量变量的统计问题的计算方法库主要诞生于统计力学领域。如今,这些方法不仅用于分子系统的研究,还用于从大脑神经回路到人工智能再到数据科学的各种应用。
摘要:人类与世界的互动是由不确定性主导的。概率理论是面临这种不确定性的宝贵工具。根据贝叶斯定义,概率是个人信念。实验证据支持以下观点:人类行为与感觉,运动和认知领域的贝叶斯概率推论高度一致。我们大脑的所有高级心理物理功能都被认为将新皮层中神经元的相互联系和分布式网络作为其生理底物的活性。神经元在形式为模糊集的皮质柱中组织。模糊集理论在将成员功能重新解释为可能性分布时,已经接受了不确定性建模。贝叶斯公式的术语是可以想象的,因为模糊集和贝叶斯的推论变成了模糊的推断。根据QBISM,量子概率也是贝叶斯。它们是逻辑构造而不是物理现实。它得出的是,诞生规则不过是一种总概率的量子定律。的波形和测量算子在认识论上被视为。它们两个都类似于模糊集。通过贝叶斯概率在模糊逻辑,神经科学和量子力学之间建立的新链接可能会激发人工智能和非常规计算的发展新想法。
摘要:当需要用概率方法评估城市隧道与邻近结构的相互作用时,计算能力是数值模型面临的重要挑战。因此,即使样本数量较少,智能采样算法也可以成为获得结果领域更好知识的盟友。无论如何,当采样有限时,风险评估也会受到限制。在这种情况下,人工智能 (AI) 可以通过插入结果并快速生成更大的样本来填补风险分析中的一个重要空白。人工智能算法的目标是找到一个近似函数(也称为替代模型),该函数可以重现原始数值模拟行为并且可以更快地进行评估。该函数是通过在智能采样技术获得的特殊点执行多次模拟来构建的。本文使用了一个假设案例来验证方法建议。它涉及一条深度约为三倍直径的隧道的连续挖掘,与一座七层楼的建筑物相互作用。首先,对三维数值模型 (FEM) 进行确定性求解,然后对其域和网格进行细化。之后,从 FEM 软件中以数值方式获得另外 170 个解决方案,并对所涉及的随机变量进行策略性抽样。接下来,基于 31 种人工智能技术,评估哪些变量对于预测周围建筑物地基元件的垂直位移量级最重要。然后,一旦选出了最重要的变量,就再次对 31 种人工智能技术进行训练和测试,以确定 R 平方最小的技术。最后,使用这种最佳拟合算法,可以使用大量样本(大小约为 10 7 )来计算失败的概率。这些样本用于说明简单蒙特卡罗抽样 (MC) 和拉丁超立方抽样 (LHS) 的收敛性。本文的主要贡献是方法论上的;因此,该新程序可以汇总到与隧道相关问题相关的最先进的风险评估方法中。
听力障碍 [1, 2] 是许多国家正在发展的残疾之一,并被视为古代需要解决的重要问题。在其他器官中,听觉是人类最重要的操作功能 [3],因为它允许人们相互交流。根据最近的评论,分析认为听力障碍 [4-6] 是世界第五大残疾,它与社会孤立、孤独和认知健康不佳高度相关。通常,听力障碍可能发生在单耳或双耳,可能是暂时的,也可能是永久性的。听力障碍的主要症状如下:沟通困难、无法在嘈杂的环境中理解对话、无法收听广播/电视、感觉到哔哔声以及在小组讨论中注意力不集中。世界卫生组织 (WHO) [7-9] 指出,听力损失在所有年龄性别中都很常见,并且可能会根据事件的数量而增加。它