1 这是一篇论文(同名)的扩展版本,该论文已被《技术分析与战略管理》有条件接受发表。该扩展版本详细介绍了量子理论的三个实际应用,我们认为这些应用是近期实现更多量子能力的唾手可得的成果。 2 该部分最初也由《技术分析与战略管理》进行同行评审,但为了满足期刊的字数限制,我们不得不在最终期刊版本中删除它。 3 并非所有古典科学都是确定性的,许多科学表现出更具概率性的性质,因此,尽管它们有着古典基础,但也包含一些不确定性和不可预测性因素。
水力发电植物特有的水电单位承诺问题(HUC)是电力生产计划问题的一部分,称为单位承诺问题(UCP)。更具体地说,所研究的情况是带有单个植物的HUC的病例,表示为1-HUC。该植物位于两个储层之间。地平线在时间段内被离散。该植物以有限数量的点为定义为一对的一对固定功率和相应的水流。考虑了几个约束。每个储层都有一个初始音量以及窗口限制,该约束由每个时间段的最小和最大体积定义。在每个时间段内,水库中的水摄入量都有额外的正,负或零摄入。考虑了价格最大化最大化问题的情况。提出了一个有效的精确a*变体,即所谓的ha*,以解决1-HUC的窗口,并以减少的搜索空间和专用乐观的启发式启发式。将此变体与经典资源约束的最短路径问题(RCSPP)算法和用CPLEX求解的混合整数线性程序制定配方进行比较。结果表明,在一组现实的实例上,所提出的算法平均在计算时间方面优于同时替代方案,这意味着HA*表现出更稳定的行为,并且求解了更多的实例。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月15日。 https://doi.org/10.1101/2025.02.12.12.637580 doi:Biorxiv Preprint
“脱靶效应很可能发生在存在与 siRNA 种子区域形成碱基配对的非靶标 mRNA 时,”Hiroshi Abe 教授解释道。“我们意识到,可以通过化学修饰降低该种子区域的碱基配对能力或双链稳定性来抑制脱靶效应,确保只有当整个引导链与靶标 mRNA 结合时才能形成稳定的复合物。”
本文提出了一种解决能源圈内通常称为鸭曲线问题的电力负荷分配问题的新方法。鸭曲线问题是一条曲线,显示公用事业公司为其消费者提供的总电力负荷(来自火力发电厂的能源)与风能和太阳能发电(或本地发电)满足部分负荷(可再生资源或绿色能源)后的负荷之间的差异。这种方法基于无监督学习长短期记忆(LSTM)和注意力机制,旨在对鸭曲线预测做出清晰的解释,并了解这种差异的明确原因,从而帮助决策者更好地解释曲线并有效地解决问题。信息和通信技术(ICT)和物联网(IoT)对于绿色能源的部署是必不可少的。因此,可以利用不同传感器的数据作为支撑,验证本地生产层面的信息,以有效、有针对性的方式解决“鸭子曲线”问题。
摘要 - 在这项工作中,我们研究了最短矢量问题(SVP)在学习错误问题(LWES)方面产生的最短媒介问题(SVP)。lwes是模块环上方程式的线性系统,其中将扰动向量添加到右侧。这种类型的问题引起了人们的极大兴趣,因为必须解决LWES,以便能够破坏基于晶格的密码系统作为NIST在2024年发表的基于模块的键盘封装机制。由于这一事实,已经研究了几种基于经典和量子的算法来求解SVP。可用于简化给定SVP的两种著名算法是Lenstra-Lenstra-Lov´asz(LLL)算法和块Korkine-Zolotarev(bkz)算法。LLL和BKZ构造碱基可用于计算SVP的解决方案或近似解决方案。我们研究具有不同尺寸和模块化环的SVP的两种算法的性能。因此,如果LLL或BKZ在给定的SVP中的应用被认为是成功的,那么它们会产生包含SVP的溶液向量的碱基。
b'we考虑了与随机噪声(LPN)问题的经典学习奇偶的稀疏变体。我们的主要贡献是一种新的算法框架,它为学习稀疏平等(LSPN)问题和稀疏LPN问题提供了针对低噪声的学习算法。与以前的LSPN和稀疏LPN的方法不同(Grigorescu等人,2011年;英勇,2015年; Karppa等。,2018年; Raghavendra等。,2017年; Guruswami等。,2022),该框架具有一个简单的结构,而无需快速矩阵乘法或张量方法,因此其算法易于实现并在多项式空间中运行。令n为尺寸,k表示稀疏性,\ xce \ xb7是噪声率,使每个标签都会被概率\ xce \ xb7串起。是计算学习理论中的基本问题(Feldman等人。,2009年),学习与噪声的稀疏平等(LSPN)假定隐藏的平等是K -Sparse,而不是潜在的密集载体。虽然简单的枚举算法采用n k = o(n/k)k时间,但以前已知的结果静止图至少需要n k/2 = \ xe2 \ x84 \ xa6(n/k)k/2 k/2对于任何噪声率\ xce \ xb7(Grigorescu等人(Grigorescu等)),2011年;英勇,2015年; Karppa等。,2018年)。我们的框架提供了LSPN算法在时间O(\ XCE \ XB7 \ XC2 \ XC2 \ XB7 N/K)K中,对于任何噪声率\ XCE \ XB7
摘要在近年来,供应链优化已成为运营研究的主要主题。从计算和NAL溶液质量的角度概述了巨大的extline方法。但是,除了最佳之外,供应链的一个主要需求是不可思议的和对干扰的适应性。这项研究工作的目的是针对能够利用确定性和随机质量指数的详尽程序进行彻底的程序。然后选择了传送人问题作为案例研究,因为它代表了最基本的操作研究问题。基于单位操作的主要评估方法的适应,可提供良好的结果并允许正确识别批判性。此外,它证明,根据预期的偏差性质,在数百万个可能的替代方案中,最佳解决方案被认为是有限的子集。那么,在将来的研究中,值得扩展到更复杂的系统。
摘要:操作研究(OR)技术已被广泛用于优化问题,例如制造计划,供应链优化和资源分配。尽管具有传统或尤其是确切的方法,但通常在可伸缩性,计算效率和对行业4.0的动态和不确定环境的适应性方面遇到困难。尽管机器学习(ML)的进步提供了解决这些挑战的新方法,但它们还提出了局限性,例如缺乏保证精确的解决方案和相关数据的需求。因此,OR和ML的集成提供了一个平衡的解决方案,利用ML从大型数据集中提取模式并做出预测性决策和OR的精确度以增强决策过程,尤其是在使用行业4.0的环境安排任务的过程中。这种组合不仅提高了解决方案的鲁棒性和效率,而且还可以减轻两个领域的个人局限性。并根据不确定性做出预测性决策补充了OR的决策过程。本文旨在对ML的整合和OR,重点介绍其在调度问题中的应用。关键字:行业4.0,调度,操作研究,机器学习
为了使这些研究更加系统,并真正评估了方法的性能,重要的是具有良好的基准,即当地MCMC确保很难采样的问题。在90年代初期,必须面对同样的问题,以评估寻找优化或满足性问题解决方案的本地搜索算法的性能[21]。在这种情况下,通过引入研究的随机实例的集合来解决生成良好基准的问题[21 - 24]。随后在数值和分析上都显示了这些随机优化/满足性问题需要在N中成倍缩放,以在某些参数空间的某些区域在足够低的温度下进行适当的采样[2]。因此,它们为采样算法提供了很好的基准。然而,最近将机器学习方法应用于加速抽样的尝试尚未考虑这些基准。在本文中,我们考虑了一个典型的难以样本的随机问题,即随机图的着色,我们表明所有提出的方法都无法解决。我们的结果证实,这类问题是抽样方法的真正挑战,甚至在智能机器学习的动作的帮助下。[20]中研究的模型可能属于此类。此外,我们讨论了一些实际问题,例如学习辅助模型时的模式崩溃,当目标概率分布具有多个峰值时,并且辅助模型仅学习其中一个(或一个子集)。