异质和非同质 无 同质和非同质 激光沿 -------------- 方向发射光。 各种 1 2 无 1 激光辐射具有 --------------- 相干度。 低 高中 非常低 高 时间不相干性是光束的特性 ----------- 单一 多重 a 和 b 以上都不是 单一 时间相干性的另一个名称是 ----------- 相干性 横向 空间 纵向 以上都不是 纵向 ----------- 是光泵浦稀土激光系统的最佳例子 钙离子 铒离子 铀离子 钕离子 钕离子 发现荧光量子效率接近 -------- 零 小于 1 1 大于 1 1 光束强度降至中心值的 1/e 倍的点称为 ---------- 内边 半边 全边 外边 外边
1.0简介Aramid纤维(AFS)是一类高性能有机聚合物纤维,以其出色的机械性能,耐热性和化学稳定性而闻名。自1964年发明以来,AFS已成为从航空航天和防御到运动器材和电绝缘材料的广泛应用中必不可少的材料。[1-5]芳香虫的独特特性归因于其分子结构,该结构由酰胺基团相连的芳族环组成。在旋转过程中实现的高度分子取向也沿纤维轴赋予强度和刚度。商业AFS主要基于两种聚合物 - 聚(P-phenylene terephalamide)(PPTA)(PPTA),销售为Kevlar和Twaron,以及聚(M-phenylene isophthalamide)(MPIA)(MPIA),以商业上称为Nomex。近年来还看到了其他特种弧菌的出现,例如聚(P-苯基苯甲甲行唑)(PBO)和具有增强的热耐药性的杂环芳烃[6-9]。在过去的几十年中,已经采用了一系列干燥和湿的旋转技术来生产商业AF。旋转过程的选择取决于聚合物类型,所需的纤维特性和过程经济学。在本综述中提供了不同旋转方法以及芳香旋转技术的关键发展。最近的制造芳香
优化具有一致质量的重组腺相关病毒(RAAV)的上游和下游过程取决于快速介绍关键质量属性(CQAS)的能力。在RAAV产生的背景下,将病毒滴度,衣壳含量和聚集鉴定为潜在的CQA,影响RAAV介导的基因治疗产物的效力,纯度和安全性。 测量这些属性的分析方法通常会遭受较长的周转时间或较低的吞吐量来开发过程,尽管快速,高通量方法开始开发和商业化。 这些方法在学术或工业实践中尚未确定,并且很少数据。 在这里,我们审查了对Raav质量量化的量化和即将到来的分析方法。 此外,我们确定从传统方法过渡到新方法的关键挑战是后者缺乏学术和工业经验。 本文献综述为选择质量属性的分析方法提供了ASA指南,以在RAAV介导的基因疗法的过程开发过程中快速,高通量过程表征。将病毒滴度,衣壳含量和聚集鉴定为潜在的CQA,影响RAAV介导的基因治疗产物的效力,纯度和安全性。测量这些属性的分析方法通常会遭受较长的周转时间或较低的吞吐量来开发过程,尽管快速,高通量方法开始开发和商业化。这些方法在学术或工业实践中尚未确定,并且很少数据。在这里,我们审查了对Raav质量量化的量化和即将到来的分析方法。此外,我们确定从传统方法过渡到新方法的关键挑战是后者缺乏学术和工业经验。本文献综述为选择质量属性的分析方法提供了ASA指南,以在RAAV介导的基因疗法的过程开发过程中快速,高通量过程表征。
这项技术可以小批量生产个性化部件 [2]。这些部件可以打印成各种复杂的形状,而后期加工很少 [3]。单个产品的成本大大降低,工艺生产率也提高了 [2,4]。在电弧增材制造 (WAAM) 中,电弧焊工艺用于制造部件 [5]。电弧加热金属丝,熔融金属沉积在基材上 [5,6]。热填充金属在基材上的沉积会导致基材温度升高。与剩余较冷区域相比,基材在热影响区域的热膨胀会导致其机械性能发生变化。这会导致基材内形成残余应力 [7],并导致基材变形和尺寸不稳定 [6]。过去,不同的作者描述了
增材制造技术提供了在局部层面创建和修改材料成分和结构的各种可能性,但往往容易出现不良缺陷和不均匀性。本贡献利用这些缺陷在金属中生成材料固有的隐藏代码和水印,用于认证和防伪应用。通过受控和随机的工艺变化,使用激光粉末床熔合 (L-PBF) 和激光定向能量沉积 (L-DED) 工艺产生了可以通过涡流设备读取和认证的唯一代码。提出了两种方法:首先,使用 L-PBF 制造具有确定形状的体积多孔结构。其次,通过交替工艺参数的 L-DED 制造涂层,导致磁导率的局部偏差。这种非确定性编码方法产生了一种独特的材料结构,可在涡流测量中触发高信号幅度。由于熔池动力学不可复制,伪造变得不可能。统计假设检验证明,该系统能够以 5 亿分之一的确定性防止错误接受或拒绝代码。一种新型锁定系统的低成本设置表明,可以在一秒钟内可靠地感知代码。
真菌对磷酸盐的溶解是陆地生态系统养分循环的重要过程,尤其对于植物生长发育必需的元素磷的可用性而言。磷通常以不溶性形式存在于土壤中,例如铁、铝和钙的无机磷酸盐,这限制了植物根部对其的吸收。然而,磷酸盐溶解真菌能够通过分泌有机酸和磷酸酶将可用的磷酸盐释放到环境中,将这些不溶性形式转化为植物可利用的磷酸根离子。该机制不仅在植物营养方面发挥着关键作用,而且在陆地生态系统的可持续性方面也发挥着关键作用,有助于有效的磷循环和提高农业生产力。本研究的目的是通过巴西亚马逊西部微生物收集中心的三种具有散生菌目形态特征的真菌菌株,对不同磷酸盐源的溶解能力进行分子鉴定和表征。首先,重新激活这些细胞系,并使用 2% CTAB 方法进行 DNA 提取。接下来,进行 CaM(钙调蛋白)区域的扩增,作为物种鉴定的分子标记,然后进行测序和系统发育分析。为了确保分析的稳健性,基于相关物种序列的比对,采用了最大似然法,并进行了 1000 次重复。为了评估无机磷酸盐的溶解潜力,在含有三种不同形式的不溶性磷酸盐的培养基中对分离物进行体外定性测试:磷酸铁(FePO₄)、磷酸铝(AlPO₄)和磷酸钙(Ca₃(PO₄)₂)。将真菌在28°C的恒温下培养四天。磷酸盐的溶解度通过溶解指数来量化,该指数是一个参数,表示真菌在培养基中在其菌落周围产生溶解晕的能力。该指数是根据溶解晕的直径与真菌菌落直径的比率计算得出的。系统发育分析证实,所研究的三种菌株属于 Talaromyces sayulitensis 种。在进行的测试中,Talaromyces sayulitensis 菌株表现出溶解不同来源的无机磷酸盐的高潜力,在所有测试介质中呈现溶解晕。在含有磷酸铝(AlPO₄)的培养基中观察到最高的溶解率。这些结果表明,Talaromyces sayulitensis 具有显著的溶解各种形式磷酸盐的能力,作为一种有前途的生物技术工具,它可以提高贫瘠土壤中磷的利用率,促进植物生长,并有助于可持续农业实践。
航空旅行已成为人们生活中必不可少的一部分。不仅是为了方便起见,而且是因为它是前往遥远国家的最快方式,有时涵盖了其他运输方式可能需要几天甚至几个月的距离。因此,航空业的竞争加剧和降低的飞行成本使航空旅行更加负担得起,从而使其能够吸引更多的受众。到2023年,全球航空业为大约45亿乘客提供了服务。根据2021年的数据,任何给定时间的空气中估计的平面数为15,500至17,500。随着航空业的发展,全球飞行数量增加了,因此进行更好的飞机跟踪和安全性的必要性变得更加至关重要。确保乘客安全的需求推动了新技术进步的发展。这是ADS-B(自动依赖性监视广播)技术发挥作用的地方,可以增强飞机跟踪并提高空中交通管理的效率。ADS-B技术通过在飞机的速度,高度和位置提供实时数据来提供帮助,从而可以更准确,更安全地跟踪飞机。尽管有好处,但实现全球ADS-B覆盖范围仍然是一个重大挑战。传统的部署方法通常受到高成本和后勤障碍的阻碍,尤其是在稀缺地面站的农村和服务不足的地区。然而,巨大的尚未开发的潜力在于将这一基础设施分散,并激励个人有助于扩大ADS-B覆盖范围。目前,营利性公司主导了ADS-B地面站基础设施,导致可扩展性缓慢和诸如土地租金和维护之类的高昂经常性成本。此覆盖范围不仅会影响航空安全性,而且还限制了利用ADS-B数据来用于更广泛用例(包括物流,研究和情报收集)的能力。derad网络在这一点上步骤,并授权个人使用便宜且易于安装的设备建立和操作ADS-B地面站。参与者被DRD令牌激励,创建了一个互惠互利的系统,其中贡献者在增强全球航空安全的同时获得奖励。通过分散ADS-B基础架构,DERAD网络克服了传统系统效率低下,实现了更快的可扩展性和较低的成本。该模型提高了航空安全性,并为ADS-B数据的创新应用创造了机会。例如,研究人员,记者和物流公司可以访问分散的市场以获取实时飞行数据,从而在跟踪和分析中解锁了新的可能性。derad网络将复杂的集中系统转换为可访问,可扩展的解决方案,为全球空中交通管理设置新标准
阅读时,我们的眼睛通过一系列注视和高速扫视浏览文本,以提取视觉信息。这一过程使大脑能够获得意义,例如关于书面文本中表达的情绪或情感价。大脑在自然阅读过程中如何提取单个单词的情感在很大程度上是未知的。这是由于自然成像的挑战,这导致研究人员之前采用高度控制、定时的逐字呈现缺乏生态效度的定制阅读材料。在这里,我们旨在评估自然阅读英语句子时词语情绪处理的电神经相关性。我们使用了一个公开的数据集,包括同步脑电图 (EEG)、眼动追踪记录和 400 个句子中的 7129 个单词的词级语义注释(苏黎世认知语言处理语料库;Hollenstein 等人,2018 年)。我们计算了注视相关电位 (FRP),即与注视开始时间锁定的诱发电反应。对从视觉和运动诱发活动中清除的 FRP 进行一般线性混合模型分析,结果显示,在注视开始后 224 – 304 毫秒间隔内,左中和右后电极簇中的积极和消极情绪条件之间存在地形差异。包括单词、短语和句子级情绪预测因子的额外分析显示,单词级情绪的 FRP 差异相同,但短语和句子级情绪没有额外的 FRP 差异。此外,从情绪匹配的 40 次试验平均 FRP 中对单词情绪(积极或消极)进行分类的解码分析显示平均准确率为 0.60(95% 置信区间:[0.58, 0.61])。控制分析排除了这些结果是基于眼球运动或语言特征的差异而不是词语情绪。我们的研究结果扩展了以前的研究,表明词汇语义刺激的情感价会在自然阅读过程中对单词注视产生快速的电神经反应。这些结果为在生态有效条件下识别词汇语义处理的神经过程提供了重要的一步,并可用于改进自然语言处理的计算机算法。
富营养化被认为是对全球河口和沿海生态系统健康的最大威胁之一。这是一种全球现象,对食物网,水质和水生化学反应有显着影响。富营养化是向河口和沿海地区供应生态系统生态能力的结果(Nixon,2009; Rabalais等,2009)。营养负荷也可能导致养分比的变化,这可能会在海洋生态系统中产生“不良干扰”。在这一目标中,至关重要的是,沿海地区可以实现良好的环境地位(GES)。引起沿海富营养化的驾驶员设置在多个人类诱发的压力源和富营养化的影响的较大框架内(例如生物多样性,生态系统降解,有害藻类绽放和底部水中的氧气表现出现的损失似乎受到与其他压力的协同作用的加剧,包括过度的压力,沿海沿海发育过度,沿海发育和气候驱动的升高,海水表面温度,海洋酸性和沿海沿岸排放。实际上,气候变化会影响养分的投入和行为,并可能加剧富营养化及其相关的负面影响(Statham,2012; Malone and Newton,2020; Rozemeijer等,2021)。富营养化对水生环境的健康的重要性及其与多种压力的联系导致汇编了当前的研究主题:“在富营养化过程中,气候变化与人为压力之间的局限性,第二卷”。然而,气候变化与富营养化之间的联系很复杂,主要与温度,风向模式,水文周期和海平面上升有关,导致淡水系统的淹没,地层的变化,流动时间和流动性时间和植物生产力,生产力,沿海风暴的活动,沿海风暴活动,物种和ecosys的变化(2012年)。