这项技术可以小批量生产个性化部件 [2]。这些部件可以打印成各种复杂的形状,而后期加工很少 [3]。单个产品的成本大大降低,工艺生产率也提高了 [2,4]。在电弧增材制造 (WAAM) 中,电弧焊工艺用于制造部件 [5]。电弧加热金属丝,熔融金属沉积在基材上 [5,6]。热填充金属在基材上的沉积会导致基材温度升高。与剩余较冷区域相比,基材在热影响区域的热膨胀会导致其机械性能发生变化。这会导致基材内形成残余应力 [7],并导致基材变形和尺寸不稳定 [6]。过去,不同的作者描述了
在此背景下,考虑到这些技术引发的数据保护问题,爱尔兰监管机构要求 EDPB 根据 GDPR 第 64(2) 条就一般适用事项发表意见。该请求涉及在人工智能(“AI”)模型的开发和部署阶段处理个人数据。该请求更详细地询问:(1)何时以及如何将 AI 模型视为“匿名”;(2)控制者如何证明合法利益作为开发和(3)部署阶段的法律依据的适当性;(4)在 AI 模型的开发阶段非法处理个人数据会对 AI 模型的后续处理或运行产生什么影响。
● 模型训练:在训练模型之前,读取 (2) 生成的特征并进行预处理。例如,如果需要,对数据进行归一化,并根据可用数据量按比例拆分为训练、验证和测试数据集。模型训练完成后,将与 model.json 文件一起存储 (3),该文件包含有关训练模型的相关信息,例如每个隐藏层的神经元数量、隐藏层数量、使用的变量(后拟合残差、SNR 等)等。● 批量推理:模型训练完成后,可以通过加载保存的模型 (3) 并对新的 GNSS 数据执行推理过程将其部署到生产中。
AAbstr bstract act.. 在过去十年中,机器学习越来越吸引多个科学领域的研究人员,特别是在增材制造领域。同时,这项技术对许多研究人员来说仍然是一种黑箱技术。事实上,它允许获得新的见解,以克服传统方法(例如有限元方法)的局限性,并考虑制造过程中发生的多物理复杂现象。这项工作提出了一项全面的研究,用于实施机器学习技术(人工神经网络),以预测 316L 不锈钢和碳化钨直接能量沉积过程中的热场演变。该框架由有限元热模型和神经网络组成。还研究了隐藏层数和每层节点数的影响。结果表明,基于 3 或 4 个隐藏层和整流线性单元作为激活函数的架构可以获得高保真度预测,准确率超过 99%。还强调了所选架构对模型准确性和 CPU 使用率的影响。所提出的框架可用于预测模拟多层沉积时的热场。
虽然激光可能是微加工系统的核心,但成功的加工过程依赖于机器各个方面的协调配合。需要精心挑选的光学元件和光机械元件来将光束传送到工件上。高精度、顶级的运动控制系统和平台必须与机器视觉协同工作,以精确、可重复地移动工件。此外,集成的机械臂、管式装载机和传送带必须自主工作(或与操作员协同工作),以安全地处理零件,支持大批量生产。
在欧盟之外,各个国家和国际机构也认识到在线上瘾实践的影响。例如,联合国强调了在数字环境中解决数字成瘾和保护儿童权利的必要性4。但是,特定法规因国家而异。有些人已经实施了与技术成瘾特征有关的准则或法律,而另一些人仍在探索实际方法。例如,纽约立法机关于2024年6月通过的《儿童法案》第5号法案的停止成瘾性饲料剥削(安全)将禁止社交媒体平台根据某些情况下的建议算法将内容提供给18岁以下的用户。取而代之的是,这些平台将必须为年轻用户提供逆式供稿6。
航空旅行已成为人们生活中必不可少的一部分。不仅是为了方便起见,而且是因为它是前往遥远国家的最快方式,有时涵盖了其他运输方式可能需要几天甚至几个月的距离。因此,航空业的竞争加剧和降低的飞行成本使航空旅行更加负担得起,从而使其能够吸引更多的受众。到2023年,全球航空业为大约45亿乘客提供了服务。根据2021年的数据,任何给定时间的空气中估计的平面数为15,500至17,500。随着航空业的发展,全球飞行数量增加了,因此进行更好的飞机跟踪和安全性的必要性变得更加至关重要。确保乘客安全的需求推动了新技术进步的发展。这是ADS-B(自动依赖性监视广播)技术发挥作用的地方,可以增强飞机跟踪并提高空中交通管理的效率。ADS-B技术通过在飞机的速度,高度和位置提供实时数据来提供帮助,从而可以更准确,更安全地跟踪飞机。尽管有好处,但实现全球ADS-B覆盖范围仍然是一个重大挑战。传统的部署方法通常受到高成本和后勤障碍的阻碍,尤其是在稀缺地面站的农村和服务不足的地区。然而,巨大的尚未开发的潜力在于将这一基础设施分散,并激励个人有助于扩大ADS-B覆盖范围。目前,营利性公司主导了ADS-B地面站基础设施,导致可扩展性缓慢和诸如土地租金和维护之类的高昂经常性成本。此覆盖范围不仅会影响航空安全性,而且还限制了利用ADS-B数据来用于更广泛用例(包括物流,研究和情报收集)的能力。derad网络在这一点上步骤,并授权个人使用便宜且易于安装的设备建立和操作ADS-B地面站。参与者被DRD令牌激励,创建了一个互惠互利的系统,其中贡献者在增强全球航空安全的同时获得奖励。通过分散ADS-B基础架构,DERAD网络克服了传统系统效率低下,实现了更快的可扩展性和较低的成本。该模型提高了航空安全性,并为ADS-B数据的创新应用创造了机会。例如,研究人员,记者和物流公司可以访问分散的市场以获取实时飞行数据,从而在跟踪和分析中解锁了新的可能性。derad网络将复杂的集中系统转换为可访问,可扩展的解决方案,为全球空中交通管理设置新标准
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
增材制造工艺在工业领域越来越重要。特别是直接金属沉积 (DMD) 是一种很有前途的制造技术,因为它可以实现广泛的应用,例如从头开始制造零件、在传统加工的原始零件上添加材料,甚至高效修复高价值零件 [1]。除了许多优点外,该工艺的可控性仍然很困难,导致内部缺陷、几何偏差或微观结构不均匀。相变、粉末-气体动力学和参数不确定性等多种物理现象会影响工艺行为并使工艺处理复杂化。因此,需要进行大量的实验活动来确定具有可接受几何和材料性能的工艺参数