阅读时,我们的眼睛通过一系列注视和高速扫视浏览文本,以提取视觉信息。这一过程使大脑能够获得意义,例如关于书面文本中表达的情绪或情感价。大脑在自然阅读过程中如何提取单个单词的情感在很大程度上是未知的。这是由于自然成像的挑战,这导致研究人员之前采用高度控制、定时的逐字呈现缺乏生态效度的定制阅读材料。在这里,我们旨在评估自然阅读英语句子时词语情绪处理的电神经相关性。我们使用了一个公开的数据集,包括同步脑电图 (EEG)、眼动追踪记录和 400 个句子中的 7129 个单词的词级语义注释(苏黎世认知语言处理语料库;Hollenstein 等人,2018 年)。我们计算了注视相关电位 (FRP),即与注视开始时间锁定的诱发电反应。对从视觉和运动诱发活动中清除的 FRP 进行一般线性混合模型分析,结果显示,在注视开始后 224 – 304 毫秒间隔内,左中和右后电极簇中的积极和消极情绪条件之间存在地形差异。包括单词、短语和句子级情绪预测因子的额外分析显示,单词级情绪的 FRP 差异相同,但短语和句子级情绪没有额外的 FRP 差异。此外,从情绪匹配的 40 次试验平均 FRP 中对单词情绪(积极或消极)进行分类的解码分析显示平均准确率为 0.60(95% 置信区间:[0.58, 0.61])。控制分析排除了这些结果是基于眼球运动或语言特征的差异而不是词语情绪。我们的研究结果扩展了以前的研究,表明词汇语义刺激的情感价会在自然阅读过程中对单词注视产生快速的电神经反应。这些结果为在生态有效条件下识别词汇语义处理的神经过程提供了重要的一步,并可用于改进自然语言处理的计算机算法。
准确的信息处理在技术和自然界中都是至关重要的。为了实现它,任何信息处理系统都需要初始资源供应远离热平衡。在这里,我们建立了可以通过给定数量的非平衡资源来实现准确性的基本限制。该限制适用于任意信息处理任务和任意信息处理系统受量子力学定律的影响。它很容易计算,并且用熵数量表示,我们将其命名为反向熵,与所考虑的信息处理任务的时间逆转相关。对于所有确定性的经典计算及其所有量子延伸都可以达到极限。作为一种应用程序,我们建立了非quilibrium和准确性之间的最佳权衡,用于存储,传输,克隆和擦除信息的基本任务。我们的结果设定了接近最终效率限制的新设备设计的目标,并提供了一个框架,以证明量子设备的热力学优势比其经典配料。
自然语言处理(NLP)和机器学习(ML)领域的最新发展已显示自动文本处理的显着改进。同时,人类语言的表达在发现心理健康问题中起着核心作用。虽然口语在接受患者的访谈中被隐式评估,但书面语言也可以为临床专业人员提供有趣的见解。现有的工作中经常研究心理健康问题,例如抑郁或焦虑。然而,还在研究饮食失调的诊断如何从这些新技术中受益。在本文中,我们介绍了该领域最新研究的系统概述。Our investigation encompasses four key areas: (a) an analysis of the metadata from published papers, (b) an examination of the sizes and speci fi c topics of the datasets employed, (c) a review of the application of machine learning techniques in detecting eating disorders from text, and fi nally (d) an evaluation of the models used, focusing on their performance, limitations, and the potential risks associated with current methodologies.
● 模型训练:在训练模型之前,读取 (2) 生成的特征并进行预处理。例如,如果需要,对数据进行归一化,并根据可用数据量按比例拆分为训练、验证和测试数据集。模型训练完成后,将与 model.json 文件一起存储 (3),该文件包含有关训练模型的相关信息,例如每个隐藏层的神经元数量、隐藏层数量、使用的变量(后拟合残差、SNR 等)等。● 批量推理:模型训练完成后,可以通过加载保存的模型 (3) 并对新的 GNSS 数据执行推理过程将其部署到生产中。
在欧盟之外,各个国家和国际机构也认识到在线上瘾实践的影响。例如,联合国强调了在数字环境中解决数字成瘾和保护儿童权利的必要性4。但是,特定法规因国家而异。有些人已经实施了与技术成瘾特征有关的准则或法律,而另一些人仍在探索实际方法。例如,纽约立法机关于2024年6月通过的《儿童法案》第5号法案的停止成瘾性饲料剥削(安全)将禁止社交媒体平台根据某些情况下的建议算法将内容提供给18岁以下的用户。取而代之的是,这些平台将必须为年轻用户提供逆式供稿6。
图 2) ENG 分类信号处理的示意图;a) 记录的 ENG 数据集分为训练集和测试集;b) 预处理块应用信号分割和去噪;c) 从运行观察窗口提取和选择特征;d) 数据驱动的分类模型训练;e) 使用从训练中校准的模型对从测试集中提取的特征进行验证以进行类别预测;f) 根据分类器结果驱动设备的决策规则。
在此背景下,考虑到这些技术引发的数据保护问题,爱尔兰监管机构要求 EDPB 根据 GDPR 第 64(2) 条就一般适用事项发表意见。该请求涉及在人工智能(“AI”)模型的开发和部署阶段处理个人数据。该请求更详细地询问:(1)何时以及如何将 AI 模型视为“匿名”;(2)控制者如何证明合法利益作为开发和(3)部署阶段的法律依据的适当性;(4)在 AI 模型的开发阶段非法处理个人数据会对 AI 模型的后续处理或运行产生什么影响。
基于基因组结构和复制策略的相似性,RNA病毒如今可分为“超类群”,通常涵盖动物病毒和植物病毒(Goldbach & Wellink,1988;Strauss & Strauss,1988)。这一概念也越来越多地体现在病毒分类学中;尤其是引入了分类单元“目”,将很可能拥有共同祖先的病毒科合并在一起(Mayo & Pringle,1998)。对于正链、有包膜的冠状病毒和动脉炎病毒(最近被统一归入巢病毒目,Cavanagh,1997),基于相似的多顺反子基因组结构、共同的转录和(后)翻译策略以及一系列同源复制酶结构域的保守性(den Boon et al.,1991),它们之间建立了密切的系统发育关系。因此,有可能勾勒出nidovirus生命周期的共同轮廓(图1)(详见Lai & Cavanagh,1997;de Vries et al.,1997;Snijder & Meulenberg,1998)。然而,在某些方面,这两个病毒家族彼此之间存在显著差异。例如,最大的冠状病毒基因组,鼠肝炎病毒(MHV),其基因组为31±5kb,约为最小动脉炎病毒基因组,即马动脉炎病毒(EAV)12±7kb RNA的两倍半。此外,这两个病毒家族的结构蛋白没有明显的相关性,导致病毒体的大小和结构存在重要差异(den Boon et al.,1991;Snijder & Spaan,1995;de Vries et al.,1997)。大多数主要的动物正链RNA病毒群体要么产生单个多聚蛋白,要么产生单独的非结构和结构前体多肽,这些多肽随后被病毒编码或宿主编码的蛋白酶裂解,产生功能性亚基(Dougherty & Semler, 1993)。相比之下,在基因组3′-近端区域编码的nido病毒结构蛋白,
航空旅行已成为人们生活中必不可少的一部分。不仅是为了方便起见,而且是因为它是前往遥远国家的最快方式,有时涵盖了其他运输方式可能需要几天甚至几个月的距离。因此,航空业的竞争加剧和降低的飞行成本使航空旅行更加负担得起,从而使其能够吸引更多的受众。到2023年,全球航空业为大约45亿乘客提供了服务。根据2021年的数据,任何给定时间的空气中估计的平面数为15,500至17,500。随着航空业的发展,全球飞行数量增加了,因此进行更好的飞机跟踪和安全性的必要性变得更加至关重要。确保乘客安全的需求推动了新技术进步的发展。这是ADS-B(自动依赖性监视广播)技术发挥作用的地方,可以增强飞机跟踪并提高空中交通管理的效率。ADS-B技术通过在飞机的速度,高度和位置提供实时数据来提供帮助,从而可以更准确,更安全地跟踪飞机。尽管有好处,但实现全球ADS-B覆盖范围仍然是一个重大挑战。传统的部署方法通常受到高成本和后勤障碍的阻碍,尤其是在稀缺地面站的农村和服务不足的地区。然而,巨大的尚未开发的潜力在于将这一基础设施分散,并激励个人有助于扩大ADS-B覆盖范围。目前,营利性公司主导了ADS-B地面站基础设施,导致可扩展性缓慢和诸如土地租金和维护之类的高昂经常性成本。此覆盖范围不仅会影响航空安全性,而且还限制了利用ADS-B数据来用于更广泛用例(包括物流,研究和情报收集)的能力。derad网络在这一点上步骤,并授权个人使用便宜且易于安装的设备建立和操作ADS-B地面站。参与者被DRD令牌激励,创建了一个互惠互利的系统,其中贡献者在增强全球航空安全的同时获得奖励。通过分散ADS-B基础架构,DERAD网络克服了传统系统效率低下,实现了更快的可扩展性和较低的成本。该模型提高了航空安全性,并为ADS-B数据的创新应用创造了机会。例如,研究人员,记者和物流公司可以访问分散的市场以获取实时飞行数据,从而在跟踪和分析中解锁了新的可能性。derad网络将复杂的集中系统转换为可访问,可扩展的解决方案,为全球空中交通管理设置新标准