营养激励措施(NI)和生产处方(PPR)计划,与食品枢纽合作,可以帮助弥合当地农民与低收入社区成员之间的鸿沟。虽然本地采购已经建立在许多GUSNIP受赠人组织的使命中,但本地采购与NI和PPR项目特别相关,因为审稿人优先考虑使用本地采购组件的GUSNIP应用程序。这些简短的案例研究重点介绍了食品枢纽为NI和PPR项目提供宝贵机会的方式的具体示例,以及这些项目如何与食品枢纽一起作为供应链合作伙伴,倡导者和社区连接器。食物枢纽定义和统计数据可以通过多种方式定义食物中心。最常见的术语是指积极地管理对多个买家进行汇总,本地和区域食品的汇总,分销和营销的企业或组织,其中可能包括直接面向消费者的销售,批发分销(销售和大量产品向零售商和其他食品企业的销售和交付)或两者结合。作为区域供应链中介人,食品中心通常是独特的位置,以支持成功实施NI和PPR计划。2021年国家食品中心调查的数据显示,有45%的响应枢纽积极参与NI计划,而34%的响应枢纽则提供PPR计划1(Bielaczyc&Colasanti,2023年)。比较先前国家食品枢纽调查的数据表明,Covid-19的大流行可能增加了食物中心的快照赎回。在2019年,有13个食品枢纽报告赎回了97,855美元的快照福利,而在2021年,28个食品枢纽报告赎回了399,702美元的SNAP福利(Bielaczyc等,2020)。
抽象的碳 - 碳复合材料是碳基质增强的碳纤维,并被归类为非常适合高温结构应用的高级材料。碳 - 碳复合材料的特征是在高温下保持出色的机械性能和结构稳定性,并已在航空航天应用中用作喷嘴,热壳和前缘。但是,制造碳 - 碳复合材料的常规方法是昂贵且耗时的。这项工作的目的是开发一种使用高压重新浸润过程创建添加性生产(AM)碳 - 碳复合材料的方法。这样做,与低压重新浸润相比,需要更少的渗透周期,从而减少了总生产时间。样品。对于这两种技术,AM碳纤维/PEEK复合零件均用于复合预成型,SC-1008酚醛树脂被用作聚合物基质。热解循环,以将酚醛树脂转化为所需的碳基质。两种技术相互比较,分析了每种技术产生的孔隙率。与传统的VARTM技术相比,这项工作中开发的高压重新浸润系统的孔隙率较小,需要更少的重新渗透和热解周期,以达到所需的孔隙率。(:。)
摘要:蛋白质质量控制机制在癌症进展中发挥着重要作用,它提供适应性反应和形态稳定性,以应对全基因组拷贝数变异、非整倍体和构象改变的体细胞突变。这种对蛋白质质量控制机制的依赖产生了一种脆弱性,可以通过针对蛋白质质量控制机制的成分来利用这种脆弱性获得治疗益处。最近,含缬氨酸蛋白 (VCP),也称为 p97 AAA-ATPase,已成为癌细胞中可用于药物治疗的靶点,以影响它们对蛋白质质量控制的依赖性。在这里,我们表明 VCP 抑制剂会在几种卵巢癌细胞系中诱导细胞毒性,这些化合物与米非司酮协同作用,米非司酮是一种先前被证明会诱导非典型未折叠蛋白反应的药物。虽然临床上可达到的剂量的米非司酮会诱导较弱的未折叠蛋白反应,但它会增强 VCP 抑制剂 CB-5083 的细胞毒性作用。从机制上看,米非司酮阻断了 ATF6 在内质网 (ER) 应激反应中的细胞保护作用,同时通过 HRI (EIF2AK1) 介导的信号转导途径激活 ATF4 和 CHOP 的细胞毒性作用。相反,CB-5083 通过 PERK (EIF2AK3) 介导的信号通路激活 ATF4 和 CHOP。这种组合激活了 ATF4 和 CHOP,同时阻断了 ATF6 提供的适应性反应,从而增强了细胞毒性作用和协同药物相互作用。
高斯状态和测量值加在一起不足以成为量子计算的强大资源,因为任何高斯动力学都可以用经典方法高效模拟。然而,众所周知,任何一种非高斯资源(状态、幺正运算或测量)与高斯幺正值一起构成通用量子资源。光子数分辨 (PNR) 检测是一种易于实现的非高斯测量,已成为尝试设计非高斯状态以进行通用量子处理的常用工具。在本文中,我们考虑对零均值纯多模高斯状态的子集进行 PNR 检测,以此作为在未检测到的模式上预示目标非高斯状态的一种手段。这是因为使用压缩真空和被动线性光学系统可以轻松可扩展地制备具有零均值的高斯状态。我们计算了实际预示状态和目标状态之间的保真度上限。我们发现,当目标状态是多模相干猫基簇状态时,该保真度上限为 1/2,这对于通用量子计算来说是一种足够的资源。这证明了存在无法通过此方法产生的非高斯状态。我们的保真度上限是一个简单的表达式,仅取决于光子数基中表示的目标状态,它可以应用于其他感兴趣的非高斯状态。
摘要。一般来说,煤矿开采都是公开进行的,使用重型设备在表土区取土和搬运土壤,直到可以进行煤矿开采。因此,由于存在物理、化学和生物土壤损害,营养水平较低。生物修复是利用土壤微生物改善前煤矿土地的替代方法之一,这些微生物对土壤植物激素水平有影响,例如产生生长素的根际细菌。本研究旨在分离和表征前煤矿土壤上生长的豆科植物根系的根际细菌,并定性和定量确定其产生 IAA 激素的能力。表征包括革兰氏染色特性、菌落形态、分离物排列和细胞形状。然后,分别使用 Salkowski 方法和分光光度法测试细菌定性和定量产生 IAA 的能力。结果表明,在原煤矿区土壤上生长的豆科植物根际细菌分离株中有 11 种能够产生 IAA 激素,平均浓度为 15.949 ppm(2IA4);10.762 ppm(4IIE3);9.700 ppm(ID3);9.422 ppm(3IB4);7.970 ppm(2IA3);7.847 ppm(6IIB3);7.268 ppm(8IIIB4);6.804 ppm(IIID5);6.459 ppm(IE5);5.379 ppm(7IIIB3);和 5.086 ppm(5IB3)。浓度最高的根际细菌分离株有可能被选为原煤矿区土壤上豆科植物的生长促进剂,以提高豆科作物的生产力。
•2023年11月 - 加拿大USTR和USDA的大量参与后,承认根据加拿大清洁燃料法规(CFR),美国原料符合土地使用和生物多样性标准。这确保了美国生物柴油和乙醇向加拿大出口(2023年的32亿加元),并且根据CFR的土地使用和生物多样性标准,美国生物燃料原料出口不会受到阻碍。此外,2023年6月,加拿大达成了一个实用解决方案,以满足生产者的宣言要求,避免了美国原料和生物燃料出口商的繁重行政负担。•2022年3月 - 加拿大USTR的大量参与后,同意定期将其新清洁燃料法规的修正案通知WTO,以规范可再生燃料及其原料的生产和进口,以用于运输燃料。自2022年3月以来,加拿大已通知了该法规的修正案,因此,美国能够说服加拿大通过授予仅向加拿大国内生物燃料生产商使用碳捕获技术来修改生物燃料的某些因素。
液化空气集团高级副总裁兼执行委员会成员 Pascal Vinet 负责监督欧洲工业活动,他表示:“该创新项目的特点是结合了多种解决方案,以生产可再生和低碳氢气,并为道达尔能源公司 Grandpuits 工厂的脱碳做出贡献。它还提供了回收二氧化碳的机会,作为循环经济方法的一部分,同时确保其用于农业食品应用。该项目展示了液化空气集团与客户合作提供定制解决方案的专业知识,以帮助他们减少碳足迹并积极参与应对全球变暖。它再次证明了氢气在能源转型中将发挥的关键作用。”
一项强大的企业社会责任承诺是其作为“积极采矿”企业社会责任路线图的一部分的最严格的负责采矿标准,Eramet已承诺将其所有采矿业务施加在基于IRMA的独立审计过程中(负责负责的采矿措施)标准。这是采矿部门的第一个国际标准,其全球方法,包括采矿业务的环境,社会和治理方面。通过与各个部门的利益相关者(包括社区,非政府组织和行业专家)的参与,Irma确保了整体观点,以解决各种关注点并促进整个采矿供应链中的透明度。Centenario网站在2022年完成了自我评估,并准备为2025年初的外部审核做准备。
摘要:为了从纤维素生物量产生生物乙醇,使用预处理过程来减少样本量,将半纤维素分解为糖,并打开纤维素成分的结构。将纤维素部分用酸或酶水解为发酵成生物乙醇的葡萄糖糖。但是,本文是关于使用天然微生物通过发酵将纤维素生物量转化为生物乙醇的综述。所使用的信息主要来自次要来源;获得的数据表明,需要进行大量工作以确定可持续的天然微生物和更友好的生物友好过程,以实现更多的微生物生产率和提高生物乙醇产量。这些对于确保安全,清洁,经济和可持续的能源资源可以大有帮助。doi:https://dx.doi.org/10.4314/jasem.v27i8.7开放访问政策:Jasem发表的所有文章都是由Ajol提供的PKP的开放式访问文章。这些文章在出版后立即在全球范围内发布。不需要特别的许可才能重用Jasem发表的全部或部分文章,包括板,数字和表。版权策略:©2023作者。本文是根据Creative Commons Attribution 4.0 International(CC-By-4.0)许可证的条款和条件分发的开放式文章。,只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文引用为:Atiku,Y。M; Abdulsalam,S;穆罕默德(J);艾哈迈德(Ahmed),S。I(2023)。J. Appl。SCI。 环境。 管理。SCI。环境。管理。使用天然微生物通过发酵将纤维素生物量转化为生物乙醇:综述。27(8)161-164日期:收到:2023年7月10日;修订:2023年7月25日;接受:2023年8月14日发表:2023年8月30日关键字:纤维素生物量,生物乙醇,发酵,微生物;糖化世界的传统能源可能无法满足不断上升的能源需求(Lee等,2019; Pothiraj等,2015);结果,像生物乙醇这样的生物燃料已成为运输行业当前使用的化石燃料的可能替代品。Alvira等。 (2010年)指出,乙醇在化学,药物和食品领域作为燃料,溶剂和原料具有广泛的用途。 发现工艺经济学是生产生物乙醇的关键问题。 当前的研究工作集中在开发可持续可持续生产大量生物乙醇的商业上可行的过程。 由于人口增长和工业化,在过去几十年中,全球能源需求一直在扩大。目前,大约80%的能源来自不可再生的化石燃料资源。 (Kumar and Singh,2016年)。 Katoka等。 (2017)声称,由于出色的燃料质量Alvira等。(2010年)指出,乙醇在化学,药物和食品领域作为燃料,溶剂和原料具有广泛的用途。发现工艺经济学是生产生物乙醇的关键问题。当前的研究工作集中在开发可持续可持续生产大量生物乙醇的商业上可行的过程。由于人口增长和工业化,在过去几十年中,全球能源需求一直在扩大。目前,大约80%的能源来自不可再生的化石燃料资源。(Kumar and Singh,2016年)。Katoka等。 (2017)声称,由于出色的燃料质量Katoka等。(2017)声称,由于出色的燃料质量
b'Abstract:模块化聚酮化合物合酶(PKS)是巨型组装线,产生了令人印象深刻的生物活性化合物。然而,我们对这些巨质的结构动力学的理解,特别是酰基载体蛋白(ACP)结合的构建块的递送到酮类合酶(KS)结构域的催化位点的构建块仍然受到严重限制。使用多管结构方法,我们报告了在根瘤菌毒素PK的链分支模块中C C键形成后域间相互作用的详细信息。基于机制的工程模块的交联,使用作为迈克尔受体的合成底物底座。交联蛋白使我们能够通过低温电子显微镜(Cryo-EM)在C键形成时鉴定出二聚体蛋白复合物的不对称态。AlphaFold2预测也指示了两个ACP结合位点的可能性,其中一个用于底物加载。NMR光谱表明,在溶液中形成了瞬态复合物,独立于接头结构域,并且具有独立域的光化学交联/质谱法使我们能够查明域间相互作用位点。在C C键形成后捕获的分支PK模块中的结构见解可以更好地理解域动力学,并为模块化装配线的合理设计提供了宝贵的信息。
