文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日
新技术不可避免地越来越多地融入到机构和人们的活动中,这一事实对可持续性提出了挑战,因为充分利用进步将使发展更加尊重环境。考虑到上述情况,这项工作的目的是调查与人工智能、清洁生产和可持续绩效相对应的研究趋势。为此,在科学数据库 Scopus 和 Web of science 中对 110 篇论文进行了文献计量分析。为了进行统一、清理和图形可视化过程,使用了技术工具 Vantage Point、R 中的 Biblioshiny 和 VoSviewer。结果展示了近年来该主题在科学领域的当前趋势。对各国的分析表明,亚洲大陆处于世界领先地位。另一方面,关键词的研究强调了研究的三大基本支柱的重要性,可能存在非实证关系。结果表明,人工智能、清洁生产和可持续性之间的接近性。
CO 2排放每年继续增加。因此,要达到巴黎气候协议中设定的目标,有必要减少排放并实施CO 2捕获方法(Kammerer等,2023)。减少CO 2排放的必要性是许多国际法律所需的,包括适合55个包装(Bro园等人2023)和排放交易系统(EU ETS)的修订(Bordignon和Gamannossi degl'innocenti,2023年,Rogulj等人。2023)。在2022年,在通过部门全球发射CO 2中,在电能和发热部门中观察到最大的排放,占总排放量的39.7%(国际能源局,2023年)。在波兰,系统热量大约有1500万人使用,受监管的热量占家庭市场的42%(IzbaGospodarczaCiepłownictwoPolskie 2023)。在热量产生中使用的燃料的多元化正在缓慢发展。波兰市场仍然由化石燃料主导,化石燃料在2021年占热源中使用的所有燃料的69.5%(2020年至68.9%,2019年至71%,2018年 - 72.5%,2017年至74.0%)。在2021年,使用了14,0.89亿吨这种原料来实现许可的热工程需求(UrządRegulacji Energetyki 2022)。必须指出的是,除了燃烧过程外,煤炭的发掘对环境造成了重大负担(Chłopek等人。2021)。上述数据表明,CO 2排放的减少构成了一个严重的挑战。减少
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
我们提出了一种方法,通过解决基于模型的最优控制问题,以经济高效的方式运行电解器以满足加氢站的需求。为了阐明潜在问题,我们首先对额定功率为 100 kW 的西门子 SILYZER 100 聚合物电解质膜电解器进行实验表征。我们进行实验以确定电解器的转换效率和热动力学以及电解器中使用的过载限制算法。得到的详细非线性模型用于设计实时最优控制器,然后在实际系统上实施。每分钟,控制器都会解决一个确定性的滚动时域问题,该问题旨在最大限度地降低满足给定氢气需求的成本,同时使用储罐来利用随时间变化的电价和光伏流入。我们在模拟中说明了我们的方法与文献中的其他方法相比显著降低了成本,然后通过在实际系统上实时运行演示来验证我们的方法。
摘要 Covid-19 的爆发导致制造业运营中断。最严重的负面影响之一是关键医疗用品的短缺。制造公司面临来自政府的压力,要求其利用制造能力重新利用生产来满足对必需产品的关键需求。为此,技术和人工智能 (AI) 的最新进步可以作为应对解决方案,以克服与重新利用制造 (RM) 相关的威胁。该研究的目的是通过系统的文献综述 (SLR) 来调查人工智能在 RM 中的重要性。本研究收集了 SCOPUS 数据库中选定研究领域的约 453 篇文章。结构主题模型 (STM) 用于从选定的 RM 中 AI 文档中生成新兴的研究主题。此外,为了研究 RM 中 AI 领域的研究趋势,使用 R 包进行了文献计量分析。研究结果表明,由于该领域每年全球文章的产量有限,因此该领域的研究空间巨大。然而,这是一个不断发展的领域,已经确定了许多研究合作。该研究提出了一个全面的研究框架和未来研究发展的建议。
nedo一直致力于建立供应链,以实现SAF的实际应用,从采购多种原材料,例如废食用油,植物油和脂肪,生物乙醇,木质生物量和微藻,到每个转换过程的演示,到整齐的SAF,确保燃油质量到燃料质量到机场,并建立了供应系统,并建立了一个供应系统。
摘要 本文比较和分析了八个欧洲国家的沼气发展与国家沼气解决方案政策框架之间的关系。政策框架使用沼气政策模型进行比较,该模型包含五个维度:政策类型;行政区域;行政级别;价值链的目标部分;连续性和随时间的变化。所研究的国家显示出沼气产量增加和停滞的例子,所有这些都与国家政策框架的变化有关。许多不同的政策工具——特别是经济手段——已被证明能成功刺激沼气生产,但改变一个运作良好的框架可能会阻碍发展。因此,可预测性和针对目标参与者的相关性是政策制定的关键。然而,可能需要针对价值链的特定部分来整合沼气解决方案的所有好处,例如农业甲烷减排。此外,设计既有效又可持续的政策和政策工具可能具有挑战性,而无需修改或调整。最后,在一个国家有效的沼气政策和政策手段不一定在另一个国家产生相同的结果,因为它们取决于更广泛的背景和政策以及经济框架。
如今,畜牧业面临着增加产量以满足日益增长的动物产品需求的挑战。在这种情况下,牛的繁殖代表着一个多因素过程,需要做出明智的战略决策来提高繁殖率和经济效益。本研究的目的是分析人工智能在改善牛繁殖决策方面的潜力。分析了该学科的几种技术的应用,例如机器学习、人工神经网络、深度学习、支持向量机和决策树。这些技术可以应用于不同的领域,例如:基因选择、发情和疾病检测、人工授精和动物健康监测。这些技术的使用取决于三个基本因素:组织的特征、拟议的目标和数据集的特殊性,在决定使用哪种技术时必须考虑到这些因素。因此,智能技术的应用可以降低成本,增加牛奶和肉类产量,从而提高效率和盈利能力,保证动物福利,从而实现畜牧业的可持续发展。决策、畜牧业、智能技术、食品安全