我国老年人口数量不断增长,老龄负担加重,老龄化已成为经济增长的制约因素。数字时代的到来,促使数字经济成为经济增长的新引擎。本文利用DEA-Malmquist指数模型测度了2011—2021年中国31个省区的全要素生产率增长率,并利用调节效应模型实证检验了数字经济、老龄化与全要素生产率之间的关系,并验证了数字经济发展是否能够缓解老龄化对全要素生产率的负面影响。研究结果表明,老龄化抑制全要素生产率增长,数字经济可以促进全要素生产率增长;数字经济可以缓解老龄化对全要素生产率增长的负面影响,且具有调节作用;数字经济通过提高人力资本水平、促进技术进步等方式发挥调节作用。区域异质性分析表明,数字经济的调节效应在东、西部地区和南方地区均存在,而在中部地区和北方地区则不存在。此外,数字经济对高老龄化群体和低老龄化群体均存在调节效应。本文的研究不仅有助于评估数字经济的生产率效应,而且对于寻找缓解老龄化负面影响的途径具有重要启示。
尽管传统 AI 取得了进展,但公共和私营部门在从数据中提取价值、确保高质量成果和应对项目复杂性方面仍然面临障碍。GenAI 可以利用现有数据来加速决策和提高生产力。然而,组织正在谨慎行事,与数据策略、隐私协议和基础设施能力保持一致。过去,集成 AI 系统带来了挑战——具体来说,部署复杂性消耗了大量资源。
背景与动机本地根和块茎食品作物(RTC)表现出广泛的农业生态适应性,对边际环境,混合农业系统的灵活性,在大多数作物无法获得的情况下产生合理产量的能力,因此适用于资源贫乏农民的生产。此外,它们提供高水平的碳水化合物和养分的能力使RTC生产成为改善食品和营养安全的基础,尤其是在小型家庭水平上。尽管产生RTC有许多感知的好处,但这些农作物仍然是侧衬和被遗忘的,即未充分利用。过去,尽管RTC在撒哈拉以南非洲的重要性很重要,但研究的关注主要集中在小麦,大米和玉米等谷物作物上。此外,RTC的生产和贸易也被忽略了其他现金作物,例如茶,咖啡,棉花和可可。RTC的忽视还导致了不一定适合生产高产的传统陆地和生产技术的长期使用。也对各个RTC对水的研究表征进行了不成比例的关注。例如,对马铃薯和木薯进行了广泛的研究,并在红薯上进行了一些工作。但是,有关塔罗,坦尼亚和山药用水的信息仍然很少。文献中针对某些RTC报告的用水量范围很大,而塔罗(Taro)出现了高作物用水。知识差距是从五个RTC的文献综述中确定的(AIM 1;参见第4.3.7和5.3.7节。第6章)。项目的目的是该项目的总体目标是测量和建模所选RTC的用水量,产量和营养含量,而目前存在的信息很少或相互矛盾的信息。第2章和第3章),然后通过现场工作(AIM 2;参见第4章和第5章的重点是(i)橙色肉红薯(Ofsp; Clientrar 199062.1),以及(ii)陆地,Eddoe Type Taro Landrace,称为Dumbe Dumbe。一个作物模拟模型进行了部分校准,并用于对每种作物的蒸散作物(ET)和产量(Y)进行建模(AIM 3;参见然后以国家规模运行该模型,以估算Y和ET,从该模型中,将作物水生产率(CWP)计算为y/et。CWP和营养含量的乘积提供了另一种称为营养水生产率(NWP)的有用度量。图显示了Y,CWP,NWP,农作物周期和作物衰竭风险的空间变异性,以改善有关这两个RTC的现有知识(AIM 5;参见模型模拟还用于开发两种农作物的土地适用性图(AIM 4;参见第8章)并得出特定地点的作物系数。后者被用作水文模型的输入,以评估作物产量对下游水利用率的影响(AIM 6;第7章)。最终项目报告代表AIM 7,这是上述信息的综合,以帮助促进SP和Taro的可持续生产。土著根和块茎食品作物的概述需要使边际农业系统多样化,并使用更少的水生产更多的农作物和营养产量。和YAM(Dioscorea spp。)。一个值得注意的策略是种植具有经济潜力并具有耐旱和营养浓度的农作物。rtcs也称为“干旱保险”作物,已成为在气候变异性和变化下解决食物和营养不安全的合理选择。RTC生产地下食物,包括红薯(ipomoea batatas),木薯(manihot esculenta),塔罗(Colocasia esculenta),tannia(xanthosoma spp。)他们广泛的农业生态适应性,尤其是在边际环境和混合农业系统中,使它们成为解决贫困农村家庭营养不良的核心。
垂直耕作已经发展起来,因为人口增加和农业土地缩小,空间的限制。尽管垂直耕作与小型耕作作物相关,尤其是蔬菜,花朵和一年一年,例如草莓,也可以通过选择适当的品种和农业结构来种植。进行了一个实验,以评估全光谱光对垂直农业系统下草莓的生长,开花,成果和产量的影响。结果表明,植物高度,植物涂抹量,叶柄的长度,叶子数,水果数量,平均浆果重量和平均产量在175–200 µ mol S -1 m -2时最高。在t 1中,当植物处于自然光下的垂直方面的第四级或最高水平(L 4)时,与t 2(L 3),t 3(L 2)和T 4(L 2)和t 4(L 1)的植物相比,由于光强度降低到垂直方向。在这些较低水平的植物中生长的植物在T 5(L 3时2 h),T 6(L 2时4小时)和T 7(L 1时4 H)和在草莓的生长,开花,果实和草莓产量方面表现更好。在垂直农业系统中,空间,水,养分和光优化是可能的,因为它可以确保有效的资源利用(例如精确农业)。因此,AFSL的供应对于确保垂直农业的可持续产量很重要。
加拿大的劳动生产率在去年年底取得了少量收益。,但这是在生产力下降的六个季度之后。当然,大流行是经济的主要破坏者。在大流行期间,加拿大商业领导者的机智和独创性被充分利用。公司调整了其业务模式和工作方式。鉴于公司的敏捷方式,我们认为生产力将提高大流行,因为公司发现他们的立足点和工人培训了。我们已经看到这发生在美国的经济中,但是在这里没有发生。实际上,加拿大商业领域的生产力水平或多或少与七年前的位置保持不变。
目前,政府内部对人工智能通过自动化复杂但重复的官僚任务来提高公共服务生产力的潜力感到非常兴奋,从而释放了熟练员工的时间。在这里,我们通过绘制英国中央政府面向公民的官僚决策程序的规模并衡量其人工智能驱动的自动化潜力来探索这一机会的大小。我们估计,英国中央政府每年在提供约 400 种服务时进行约 10 亿笔面向公民的交易,其中约 1.43 亿笔是复杂重复的交易。我们估计,这些复杂交易中有 84% 是高度可自动化的,代表着巨大的潜在机会:即使平均每笔复杂交易节省一分钟,每年也能节省约 1,200 人年的工作量。我们还开发了一个模型来估计政府服务所承担的交易量,为政府提供了一种避免进行耗时交易量测量的方法。最后,我们发现政府提供的服务类型的流动率很高,这意味着自动化工作应该侧重于一般程序,而不是可能随着时间的推移而发展的服务本身。总的来说,我们的工作为现代政府的结构和运作以及它在人工智能时代如何发展提供了一个新的视角。
改变全球的气候对工作场所的生产力产生了意想不到的意外影响(Dasgupta等人。2021)。气候变化由于极端的热应力而导致工作场所的生产力恶化,这使得工作较慢,需要更多的休息以再合化,恢复和冷却(Kjellstrom等人2009; Parsons 2014)。这将由于生产率下降和职业健康危害而导致经济损失(Kjellstrom等人2009)。 随着欧盟(EU)的目标,在2030年在建筑业中显着降低温室气体(GHG)的排放和能源使用,对欧盟的建筑部门进行碳中性和节能的策略非常重要(Chantain 2023)。 木材建筑在欧盟中成为一种有效的策略2009)。随着欧盟(EU)的目标,在2030年在建筑业中显着降低温室气体(GHG)的排放和能源使用,对欧盟的建筑部门进行碳中性和节能的策略非常重要(Chantain 2023)。木材建筑在欧盟中成为一种有效的策略
信息技术的发展为数字经济创造了有利条件,数字经济被视为转变传统经济模式的重要路径,而绿色全要素生产率是衡量经济发展质量的指标,在经济转型的关键时期,数字经济与绿色全要素生产率成为实现经济可持续发展的两大主题。但数字经济对绿色全要素生产率的影响研究较少。创新环境是指人才、资金、文化氛围、政府政策等因素共同塑造的区域创新活动的支持条件;制度环境是经济、政治、社会和法律规则的总和。目前,将创新环境和制度环境纳入数字经济对绿色全要素生产率影响的讨论较少。为填补研究空白,本文基于2004—2019年中国30个省份的面板数据,采用Slack基测度-方向距离函数模型和Malmquist-Luenberger生产率指数测度各地区绿色全要素生产率,并构建广义矩估计方法,对数字经济对绿色全要素生产率的影响进行实证研究。本文以创新环境和制度环境为门槛变量,构建面板门槛模型,并利用面板分位数回归对数字经济对绿色全要素生产率的影响进行实证分析。进一步分析表明,不同层面数字经济对绿色全要素生产率的影响存在明显差异。研究结果可为探讨数字经济的绿色价值及其对绿色经济发展的促进作用提供指导。
注册办事处:Level 13, Public Trust Tower, 22–28 Willeston St | PO Box 3479, Wellington 6140 奥克兰办事处:Level 4, 70 Shortland St, Auckland 电话 0800 220 090 或 +64 4 472 1880 | econ@nzier.org.nz | www.nzier.org.nz © 新西兰经济研究所 (Inc)。封面图片 © Dreamstime.com NZIER 的合同研究标准聘用条款可在 www.nzier.org.nz 上找到。虽然 NZIER 将尽一切合理努力进行合同研究和编写报告以确保信息尽可能准确,但研究所、其贡献者、员工和董事会均不承担任何责任(无论是合同、侵权(包括疏忽)、公平或任何其他基础),对于任何依赖此类工作而遭受的损失或损害,无论造成此类损失或损害的原因是什么。
由于木本植物的侵占,树篷覆盖物的增加,树木种植园修饰了碳和水动力学。在不同的气候条件下,尤其是在未来的气候情况下,生态系统净初级生产力(NPP)与用水量之间的折衷与增加的树木覆盖率尚不清楚。在美国南部大平原的气候过渡区内,我们使用土壤和水评估工具 +(SWAT +)来研究三个代表半干旱,亚光和潮湿攀登的水域中树木覆盖和气候变化对碳覆盖率和气候变化的综合影响。模型模拟合并了两种土地使用修改(基线:现有的树木盖;森林 +:增加绿树覆盖物),并结合了两个气候变化的投影(RCP45和RCP85),跨越了两个时间(历史:历史:1991 - 2020; Future:2070 - 2099)。随着气候变化,与半干旱分水岭相比,蒸发(ET)的蒸发(ET)和相应减少的蒸发率和相应减少的增加,而半干旱和亚人类的下水道则显示出明显的流量损失(> 200 mm/cover cover cover,complate compriation covers comply covers comply comply comply convertion coply of contracts of fair 表现出更大的增加和相应的径流减少。 在两种气候变化情景下,预计树木覆盖量每1%增加1%,NPP和用水效率都可以提高所有三个流域,而次湿的流域显示出最大的增长(分别> 0.16 mg/ ha/ ha/ hah/年和170%)。 通过木质植物的扩张或造林中的草原内增加树木覆盖物可以增强生态系统NPP,尤其是在亚浮游区域。表现出更大的增加和相应的径流减少。在两种气候变化情景下,预计树木覆盖量每1%增加1%,NPP和用水效率都可以提高所有三个流域,而次湿的流域显示出最大的增长(分别> 0.16 mg/ ha/ ha/ hah/年和170%)。通过木质植物的扩张或造林中的草原内增加树木覆盖物可以增强生态系统NPP,尤其是在亚浮游区域。尽管如此,它带有一个著名的