背景:探索潜在的生物标志物以预测临床结果并开发针对急性髓系白血病 (AML) 的靶向疗法至关重要。本研究旨在研究硫氧还蛋白相互作用蛋白 (TXNIP)/核苷酸结合寡聚化结构域 (NOD) 样受体蛋白 3 (NLRP3) 通路的表达模式及其在 AML 患者预后中的作用。方法:在本研究中,我们使用来自基因表达综合数据库 (GEO) 的微阵列数据和来自癌症基因组图谱 (TCGA) 的转录组数据检查了 TXNIP/NLRP3 通路在 AML 患者中的预后价值,以开发预后模型,并通过定量实时 PCR (qRT-PCR) 在来自暨南大学 (JNU) 数据库的 26 名 AML 患者和 18 名健康个体的验证队列中验证结果。结果:GSE13159数据库分析显示,AML患者TXNIP/NLRP3通路中TXNIP、白细胞介素1β(IL1B)显著上调,caspase1(CASP1)下调(TXNIP,P=0.031;IL1B,P=0.042;CASP1,P=0.038)。GSE12417数据集中,与NLRP3高表达患者相比,NLRP3低表达患者的总生存期(OS)更长(P=0.004)。此外,训练集和验证集结果均表明,TXNIP、NLRP3和IL1B表达较低与预后良好相关(GSE12417,P=0.009;TCGA,P=0.050;JNU,P=0.026)。根据受试者工作特征曲线分析,该模型预测三年生存率的灵敏度为 84%。这些数据可能为 AML 结果提供新的预测因子,并为进一步研究使用 TXNIP / NLRP3 / IL1B 基因进行 AML 新型靶向治疗的可能性提供方向。
肿瘤治疗(尤其是免疫治疗和溶瘤病毒治疗)的有效性主要取决于宿主免疫细胞的活性。然而,癌症患者体内存在各种局部和全身免疫抑制机制。肿瘤相关免疫抑制涉及许多免疫成分的失调,包括 T 淋巴细胞数量减少(淋巴细胞减少症)、循环和肿瘤滤过性免疫抑制亚群水平或比率增加 [例如巨噬细胞、小胶质细胞、髓系抑制细胞 (MDSC) 和调节性 T 细胞 (Treg)],以及由于各种可溶性和膜蛋白(受体、共刺激分子和细胞因子)表达改变导致抗原呈递、辅助和效应免疫细胞亚群功能缺陷。在这篇综述中,我们特别关注标准放化疗前胶质母细胞瘤/神经胶质瘤患者的数据。我们讨论了基线时的胶质母细胞瘤相关的免疫抑制以及循环和肿瘤滤过免疫细胞(淋巴细胞、CD4+ 和 CD8+ T 细胞、Treg、自然杀伤 (NK) 细胞、中性粒细胞、巨噬细胞、MDSC 和树突状细胞)不同亚群的预后意义,包括中性粒细胞与淋巴细胞比率 (NLR),重点关注异柠檬酸脱氢酶 (IDH) 突变型胶质瘤、原神经、经典和间充质分子亚型的免疫概况和预后意义,并强调了大脑免疫监视的特点。所有试图在胶质母细胞瘤组织中确定可靠的预后免疫标志物的尝试都得到了相互矛盾的结果,这可以解释为,除其他外,免疫滤液前所未有的空间异质性水平以及免疫亚群的显著表型多样性和(功能障碍)功能状态。高 NLR 是胶质母细胞瘤和癌症患者总生存期较短的最反复证实的独立预后因素之一,其与其他免疫反应或全身炎症标志物相结合可显著提高预测的准确性;然而,需要更多的前瞻性研究来证实 NLR 的预后/预测能力。我们呼吁
肺癌是各种肿瘤中发病率最高的肿瘤之一,全球每年约有180万人被诊断出患有肺癌。近几年,肺癌亚型肺腺癌(LUAD)的发病率有所上升(1,2),该亚型占肺癌死亡人数的近50%。低剂量螺旋CT的出现改变了肺癌筛查的模式。越来越多的患者被诊断出患有癌症,当病灶完全切除时,这些患者的预后良好(3,4)。同时,放疗、化疗、分子靶向药物和免疫检查点抑制剂(ICI)的开发和应用也显著有利于这些患者的预后(5)。但仍有相当一部分肺癌患者无法从这些治疗中明显获益,需要进一步探索更有效、更精准的治疗方法。免疫逃逸是影响ICIs疗效的关键因素,参与了肺癌的发生和进展
目标:宫颈癌的预后生物标志物被广泛研究,包括癌症干细胞(CSC)标记。但是,它们的意义仍然不确定。这项研究旨在确定宫颈癌干细胞(CCSC)标记在生存中的作用。材料和方法:我们进行了系统的综述和荟萃分析(Prospero CRD42021237072),该研究报告了CCSC标记作为基于PRISMA指南的预后预测指标。我们纳入了研究组织肿瘤中CCSC表达的关联与PubMed,EBSCO和Cochrane库数据库的总生存期(OS)或无病生存期(DFS)的关联的英文文章。根据纽卡斯尔 - 奥塔瓦质量评估量表分析了研究质量。结果:从413个出版物中,在包含和排除标准的研究选择后,包括22项研究。CCSC标记的高表达与差的OS和DF相关(HR = 1.05,95%CI:1.03 - 1.07,P <0.0001; HR = 1.31,95%CI:1.09 - 1.17,P <0.00001;分别分别)。Sub-analysis of individual CCSC markers indicated significant correlations between CD44 (HR= 1.14, 95% CI: 1.07 – 1.22, P 0.0001), SOX2 (HR= 1.58, 95% CI: 1.17 – 2.14, P 0.003), OCT4 (HR= 1.03, 95% CI: 1.01 – 1.06, P 0.008), ALDH1 (HR = 1.36,95%CI:1.13 - 1.64,P 0.001)和CD49F(HR = 3.02,95%CI:1.37 - 6.64,P 0.006),OS较差; OCT4(HR = 1.14,95%CI 1.06 - 1.22,p 0.0003),SOX2(HR = 1.11,95%CI:1.06 - 1.16,P <0.0001)和AldH1(HR = 1.22,95%CI:1.10 - 1.35,P 0.0002),较差DFS)。我们没有为MSI-1和CK17进行荟萃分析,因为只有一项研究研究了这些标记。结论:OCT4,SOX2和ALDH1的表达与宫颈癌组织中的OS和DFS差有关。这些标记可能具有预测生物标志物来预测不利生存的潜在作用。
Raffone A.,Working A.,Raimondo D.,Neola D.,M.M.,Saint A.和Al。 (2022)。 淋巴结侵袭性侵入性癌:预后因素独立性强烈地分子签名。 165(1),192-197 [10.1016/j.ygyno.202.01.013]Raffone A.,Working A.,Raimondo D.,Neola D.,M.M.,Saint A.和Al。(2022)。淋巴结侵袭性侵入性癌:预后因素独立性强烈地分子签名。165(1),192-197 [10.1016/j.ygyno.202.01.013]
多发性骨髓瘤(MM)是一种遗传复杂和异质性肿瘤,其中多个基因组事件的并发导致肿瘤的发育和进展(图1)。此外,遗传异常是MM中的主要预后因素。分子细胞遗传学方法,例如G波段核分型,原位杂交(FISH)荧光(FISH)和比较基因组杂交(CGH),以及更先进的遗传技术,包括单个核苷酸(SNP)阵列(SNP)阵列,以及近来的几个型号(可能是),以下是几个核苷酸(SNP)阵列,以确定几个阵列(可能)[1]。 MM的染色体和遗传改变,可以分为三种类型:染色体易位,拷贝数异常(CNA)和点突变[2]。在涉及大量患者的几项有力研究中,已经对许多这些异常进行了测试。由国际骨髓瘤工作组(IMWG)开发的新修订的国际分阶段系统(R-IS)需要对易位t(4; 14; 14)和t(14; 16)和17p删除的易位分析,以使MM患者的风险分层[3]。MM患者存在的大多数异常是不可药物的,但是生物学,临床和治疗研究的进展有助于鉴定出对治疗特定异常的药物和组合的识别,并且可以使几种特定的靶标可用。
结果:总共包括1 808 584例患者。在派生队列中,3个现象群具有显着不同的死亡率。调整已知的协变量后,现象B与现象A相比,长期死亡率增加了20%(危险比,1.20 [95%CI,1.17-1.23]; P <0.0001; P <0.0001; phanogroup A死亡率,2.2%; femogroup B死亡率,6.1%)。在单变量分析中,我们发现现象B在所有队列中的死亡风险都明显更大(所有5个同类群中的对数秩P <0.01)。全球范围的关联研究表明,现象B的未来房颤率较高(优势比,2.89; p <0.00001),心室心动过速(优势比,2.00; p <0.00001),缺血性心脏病(优势比,1.44; p <0.00001; p <0.00001); cardiy1 <0.00001)<,cardibath 一项单特征基因组的关联研究产生了4个基因座。 SCN10A,SCN5A和CAV1在心脏传导和心律不齐中具有作用。 ARHGAP24没有明确的心脏作用,可能是一个新颖的目标。一项单特征基因组的关联研究产生了4个基因座。SCN10A,SCN5A和CAV1在心脏传导和心律不齐中具有作用。ARHGAP24没有明确的心脏作用,可能是一个新颖的目标。
1东京妇女医科大学诊断病理学系Adachi医学中心4-33-1 KOHOKU,ADACHI-KU,东京123-0872,日本; 2蒙古国立医学科学大学病理学和法医医学系,蒙古14210年; 3日本北海道080-0833,北野北北部医院临床病理学系;东京42-8666,日本东京大学4乳房中心; 5日本北海道080-0833的北野医院癌症医学科学实验室生物学和遗传学系; 6基奥癌症中心的6基因组学部,日本东京160-8582的Keio大学医学院临床和转化研究中心; 7日本北海道080-0833,北野医院和诊所的乳腺癌和乳腺癌中心。*相等的贡献者。
1 人类遗传学研究所,UMR 9002 CNRS-UM,34395 蒙彼利埃,法国; elina.alaterre@igh.cnrs.fr (EA); vvikova78@gmail.com (VV); alboukadel.kassambara@gmail.com(AK); a.bruyer@diag2tec.com (AB); c-bret@chu-montpellier.fr (CB); c-herbaux@chu-montpellier.fr (CH) 2 Diag2Tec,34395 蒙彼利埃,法国 3 CHU 蒙彼利埃生物血液学系,34395 蒙彼利埃,法国; nicolas.robert@igh.cnrs.fr (NR); guilhem.requirand@igh.cnrs.fr (GR) 4 UFR de Médecine, 蒙彼利埃大学, 34003 蒙彼利埃, 法国; g-cartron@chu-montpellier.fr 5 蒙彼利埃中央大学临床血液学系,34395 蒙彼利埃,法国;l-vincent@chu-montpellier.fr 6 IGMM,UMR CNRS-UM 5535,34090 蒙彼利埃,法国 7 威尔康奈尔医学院 Caryl 和 Israel Englander 精准医学研究所,纽约,NY 10021,美国;ole2001@med.cornell.edu 8 IUF,法国大学研究所,75005 巴黎,法国 * 通讯地址:jerome.moreaux@igh.cnrs.fr;电话:+33-(0)4-67-33-79-03 † 同等贡献。
预测和健康管理 (PHM) 系统通过提供诊断和预测功能来支持飞机维护,利用现代飞机上传感器数据可用性的提高。诊断提供故障检测和隔离功能,而预测可以预测系统的剩余使用寿命 (RUL)。在文献中,PHM 技术已从不同角度进行研究,涵盖各种目标,例如提高飞机系统的可靠性、可用性、安全性和降低维护成本。从设计角度来看,有几种设计方法的概念性公式可用,从而可以基于不同的框架和系统需求的推导来构建一组 PHM 系统架构。但是,尚未建立一套系统的方法来实现对 PHM 架构的一致定义。尚未深入研究架构的特征。为了解决这些差距,本文提出了一种系统的 PHM 架构定义方法,以确保在产品生命周期的开发阶段实现更完整、更一致的设计。此外,本文还根据此系统方法提出了一种通用的 PHM 架构。进行了案例研究以验证和确认该架构,确保其满足正确、完整地表示 PHM 特性的要求。