欢迎来到哈珀学院的物理治疗师助理课程!对于你们中的许多人来说,这是实现成为物理治疗师助理梦想的第一步。如您所知,物理治疗专业和对物理治疗师助理的需求持续增长。物理治疗师助理是医疗保健系统中不可或缺的一部分,涉及亲身护理患者。哈珀学院的物理治疗师助理课程旨在让您为协助各种医疗保健机构的物理治疗师做好准备。培训将包括通过课堂作业、实验室演示、学生实践和临床经验培养物理治疗师助理技能。我们在这里帮助您。如果您对课程材料或程序有任何疑问,请发送电子邮件或与您的讲师或协调员交谈。如果您遇到影响出勤或课程作业的问题,请与您的导师交谈。提供医疗保健是一项非常特殊的职业;您可以自豪地成为一群敬业的人中的一员,他们帮助人们并使我们的社区成为更适宜居住的地方。祝贺您迈出成为物理治疗师助理的第一步。Rita Gura 博士 PT,DPT
本小组包括四篇论文,它们为能源政策如何通过选举、政治交流、社区参与和地方经济变化等机制影响政治的问题提供了定性和定量证据。三篇论文探讨了美国清洁能源投资的政治影响。在“‘降低通胀’能否减少两极分化?评估美国绿色产业政策的反馈”一文中,Bergquist 研究了联邦清洁能源投资是否为清洁能源转型产生了扩张动力(正反馈)或反作用力、惯性力(负反馈)。在“通胀降低法案繁荣城镇”(Carley 等人)和“克服宾夕法尼亚州公平中期转型的协调障碍”(Constantino 和 Caggiano)中,作者重点关注与联邦清洁能源投资相关的分配和程序正义问题。在第四篇论文《供应侧能源转型对选举的影响》中,马丁内斯-阿尔瓦雷斯和罗斯研究了墨西哥清洁能源政策在选举中遭遇的强烈反对,该国两大政党对是否以及如何逐步淘汰化石燃料持截然不同的立场。四篇论文共同阐明了能源政策的实施、传播和公众体验;研究了公众对能源政策体验的不均衡分布;并展示了这些公众体验如何在政治体系中产生反响。这些论文还为能源转型以外的政治提供了重要见解,例如,加深了对与大规模经济变化相关的分配考虑的理解;完善了政策反馈发生的范围条件;并通过阐明开采量下降(而不是增加)的影响来扩展对资源诅咒的理解。
13:20-14:10 使用模拟内存计算加速 AI Stefano Ambrogio (IBM 研究) 摘要:过去十年见证了 AI 在各种领域的广泛传播,从图像和视频识别和分类到语音和文本转录和生成。总体而言,我们观察到人们不断追求具有大量参数的大型模型。这导致计算工作量急剧增加,需要多个 CPU 和 GPU 来训练和推理神经网络。因此,硬件的改进变得越来越重要。为了适应改进的性能,内存计算提供了一个非常有趣的解决方案。虽然数字计算核心受到内存和处理器之间数据带宽的限制,但内存中的计算避免了权重转移,从而提高了功率效率和速度。演讲将描述一个总体概述,重点介绍我们自己的 14 纳米芯片,该芯片基于 34 个相变存储器技术交叉阵列,总共约有 3500 万个设备。我们在选定的 MLPerf 网络中展示了这种架构的效率,表明 Analog-AI 可以提供优于数字核心的功率性能,同时具有相当的准确性。然后,我们为开发可靠、高效的 Analog-AI 芯片的下一步提供了指导方针,特别关注实现更大、更完善的深度神经网络所需的架构约束和机会。
*所有被录取的申请者在开始课程之前必须完成与津贴资格相关的第二个流程。津贴可能需要纳税。**院长奖学金包括津贴、校园住宿和经批准的往返洛杉矶的旅行报销。奖学金数量有限,将通过竞争方式颁发。
酒精消费政策 NACE International 致力于其员工、会员、客户、活动参与者和供应商的健康和福祉。协会希望选择在 NACE 附属活动中饮酒的个人合法且适度饮酒。任何参与者在 NACE 附属活动中饮用酒精饮料均应遵守联邦、州和地方法律。侵犯他人权利、行为不检或损坏或毁坏财产的人将受到纪律处分和/或刑事处罚。所有 CORROSION 参与者都应在 CORROSION 的所有场所遵守此酒精政策,包括辅助活动和官方和非官方社交聚会。参与者应遵守本政策和所有其他适用的 NACE International 政策的要求,包括但不限于 NACE 道德规范和反骚扰政策。
13106-10 • 生成自由电子和波导光子的相关对,Jan-Wilke Henke、Armin Feist、马克斯普朗克多学科科学研究所(德国)、IV. Physikalisches Institut、Georg-August-Univ。哥廷根(德国);黄冠豪,洛桑联邦理工学院物理研究所(瑞士),中心。洛桑联邦理工学院(瑞士)量子科学与工程系; Germaine Arend,马克斯普朗克多学科科学研究所(德国),IV. 物理研究所,乔治奥古斯特大学。哥廷根(德国); Yujia Yang、Arslan S. Raja、洛桑联邦理工学院物理研究所(瑞士)、中心。洛桑联邦理工学院(瑞士)量子科学与工程系; F. Jasmin Kappert,马克斯普朗克多学科科学研究所(德国),IV. 物理研究所,乔治奥古斯特大学。哥廷根(德国);潘嘉禾,洛桑联邦理工学院物理研究所(瑞士),中心。洛桑联邦理工学院(瑞士)量子科学与工程系; Hugo Lourenco-Martins,马克斯普朗克多学科科学研究所(德国),IV. 物理研究所,Georg-August-Univ.哥廷根(德国); Zheru Qiu、Junqiu Liu,洛桑联邦理工学院物理研究所(瑞士),中心。洛桑联邦理工学院(瑞士)量子科学与工程系; Ofer Kfir,马克斯普朗克多学科科学研究所(德国),IV. 物理研究所,乔治奥古斯特大学。哥廷根(德国); Tobias J. Kippenberg,洛桑联邦理工学院(瑞士)物理研究所,中心。洛桑联邦理工学院(瑞士)量子科学与工程系;克劳斯·罗珀斯,马克斯·普朗克多学科科学研究所(德国),乔治·奥古斯特大学物理研究所。哥廷根(德国)
我们展示了如何通过几何局部量子操作和高效的经典计算来实现涉及任意量子比特对之间门的通用量子电路。我们证明,对我们推导方案的不完美实现进行建模的电路级局部随机噪声等效于原始电路中的局部随机噪声。我们的构造导致量子电路深度增加常数倍,量子比特数增加多项式开销:为了在 𝑛 量子比特上执行任意量子电路,我们给出了一个涉及 𝑂(𝑛 3 2 ⁄ log 3 𝑛) 量子比特的 3D 量子容错架构,以及一个使用 𝑂(𝑛 2 log 3 𝑛) 量子比特的准二维架构。应用于最近的容错构造,这为具有局部操作、多项式量子比特开销和准多对数深度开销的通用量子计算提供了容错阈值定理。更一般地说,我们的变换省去了在设计容错量子信息处理方案时考虑操作局部性的需要。https://arxiv.org/abs/2402.13863