en认证以下陈述适用于EN 50131和EN 50136认证:•必须通过•必须安装PCS265LTE并连接到批准的3级控制面板•监视传输网络界面(Internet连接)的EN批准的3级控制面板(Internet连接):在网络/界面失败的情况下,该设备在控制范围的情况下,该设备可通过section the Conlote Pansey(通过它进行连接)(通过IT)(通过IT)(通过它进行连接)IT(通过IT)(通过IT)进行连接(通过IT)(通过它进行连接)。 256位加密的,有监督的通信(AES验证号986),可防止未经授权阅读或修改消息•通过信息安全性(如上所述),物理安全性(TAMPER PROTCTION)以及每个设备的唯一序列号来实现替换安全性。发送到接收站的消息包括S/N,以确定替代并相应警报
更具体地说,我们解决了 QA 的局限性,QA 并非为解决许多经济模型核心的动态规划问题而设计的。具体来说,QA 本身不允许随时间推移或跨多个目标函数进行迭代,并且受到量子到经典瓶颈的影响,这严重限制了可以读出多少经典信息作为问题的解决方案。我们的方法克服了这些限制,可用于恢复宏观经济学、产业组织、博弈论和劳动经济学问题的政策和价值函数。为了评估我们的方法,我们在 QA 上求解实际商业周期 (RBC) 模型,并将其性能与 Aruoba 和 Fern´andez-Villaverde ( 2015 )(以下简称 AFV )中的基准结果进行比较。求解 RBC 模型还使我们能够展示如何以可以在 QA 上求解的方式制定一个众所周知的经济模型。即使受到现有量子技术的限制,我们仍然可以在 AFV 中使用 C++ 以 VFI 解决方案计算时间的 3% 或组合计算时间的 0.66% 来解决 QA 上的 RBC 模型
表达IRF4 的人类朗格汉斯细胞的基因组编程 1 2 Sofia Sirvent (1)、Andres F. Vallejo (1)、James Davies (1)、Kalum Clayton (1)、Zhiguo Wu (2)、3 Jeongmin Woo (3)、Jeremy Riddell (4)、Virendra K. Chaudhri # (2)、Patrick Stumpf (5)、Liliya 4 Angelova Nazlamova (1)、Gabrielle Wheway (5)、Matthew Rose-Zerilli (6)、Jonathan West 5 (6,7)、Mario Pujato (8)、Xiaoting Chen (4)、Christopher H. Woelk (9)、Ben MacArthur (6,7)、6 Michael Ardern-Jones (1)、Peter S Friedmann (1)、Matthew T. Weirauch (4, 10)、Harinder 7 Singh* # (2, 10)、Marta E Polak* (1, 7) 8 9 10 1.临床和实验科学系,亨利·威康爵士实验室,11 个学院
量子计算不再仅仅是科学研究兴趣,而是正在迅速成为一种工业上可用的技术,有可能克服传统计算的极限。在过去的几年里,所有大公司都提供了框架和编程语言,允许开发人员创建他们的量子应用程序。这种转变导致了一门新学科的定义,即量子软件工程,它需要定义用于设计大规模量子应用的新方法。虽然研究界成功地接受了这一呼吁,但我们注意到对量子编程实践状况的系统调查不足。了解量子开发人员面临的挑战对于准确定义量子软件工程的目标至关重要。因此,在本文中,我们首先挖掘所有使用目前市场上最常用的量子编程框架的 GitHub 存储库,然后进行编码分析会话以对量子技术的用途进行分类。其次,我们进行了一项调查研究,涉及所考虑存储库的贡献者,旨在征求开发人员对量子编程当前采用情况和挑战的看法。一方面,研究结果强调,目前量子编程的采用仍然有限。另一方面,软件工程界应该认真考虑许多挑战:这些挑战不仅严格涉及技术问题,还涉及社会技术问题。
在本文中,我们提出了一种cavy的编译器,Cavy是一种命令性量子编程语言。Cavy系统的主要贡献是将区域推断应用于安全且有效的Ancilla Qubit分配,使用和交易位置,并以可逆子集的编程语言中的位置。此方法可以通过任意Ancilla操作的程序来汇编优化的量子电路。与其他有关Ancilla Deadlocation的最新工作相比,安全分析是Rust编程语言中引入的借用检查器的一种变体。它具有“移动参考”,这是一种独特的参考类型,可以安全地传输其参考文献的所有权。为了解决问题并激发这些特征,我们描述了一个量子算法,其最近的实验实现使传统线性量子量子编程语言的表现力构成表达,并给出了该算法的cav效。
摘要 —混合量子-经典工作流已成为执行变分算法和其他量子模拟技术的标准方法,这些技术是噪声中型量子 (NISQ) 计算机的关键应用。验证这些模拟是一项重要任务,有助于衡量量子计算机发展的进展,而经典模拟可以作为实现这一目标的工具。具有可量化误差界限的精确和更具可扩展性的近似方法都可用于验证任务,其中适用的指标包括与可计算的基本事实的距离、误差模型与数据的拟合质量等。在这里,我们提出了一个库扩展,其中包括基于可在高性能计算机上执行的可扩展混合工作流的量子模拟验证方法。我们提供使用基于张量网络和稳定器模拟器的近似方法来限制 NISQ 硬件上量子模拟的误差的示例。索引术语 —量子计算、量子编程
332013,Choi和Al。 2013,Kim和Al。 2013,Tian和Al。 2013,2013,Ajmal and Al。 2014,宝贝和al。 2014年,Cycuss和Al。 2014年,Lazarus和Banias 2014,Liu and Al。 2014,Pohuba和Al。 2014年,张和Al。 2014,2015,2015,JHI和AL。 2015,2015,Sharma和Al。 2015,SOH和AL。 2015,Tian和Al。 2015,Wang和Al。 2015,明和AL。 2016,Strilețchi和其他。 2016,Agrawal和Sharma 2017,Jain and Al。 2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2013,Choi和Al。2013,Kim和Al。 2013,Tian和Al。 2013,2013,Ajmal and Al。 2014,宝贝和al。 2014年,Cycuss和Al。 2014年,Lazarus和Banias 2014,Liu and Al。 2014,Pohuba和Al。 2014年,张和Al。 2014,2015,2015,JHI和AL。 2015,2015,Sharma和Al。 2015,SOH和AL。 2015,Tian和Al。 2015,Wang和Al。 2015,明和AL。 2016,Strilețchi和其他。 2016,Agrawal和Sharma 2017,Jain and Al。 2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2013,Kim和Al。2013,Tian和Al。 2013,2013,Ajmal and Al。 2014,宝贝和al。 2014年,Cycuss和Al。 2014年,Lazarus和Banias 2014,Liu and Al。 2014,Pohuba和Al。 2014年,张和Al。 2014,2015,2015,JHI和AL。 2015,2015,Sharma和Al。 2015,SOH和AL。 2015,Tian和Al。 2015,Wang和Al。 2015,明和AL。 2016,Strilețchi和其他。 2016,Agrawal和Sharma 2017,Jain and Al。 2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2013,Tian和Al。2013,2013,Ajmal and Al。2014,宝贝和al。2014年,Cycuss和Al。 2014年,Lazarus和Banias 2014,Liu and Al。 2014,Pohuba和Al。 2014年,张和Al。 2014,2015,2015,JHI和AL。 2015,2015,Sharma和Al。 2015,SOH和AL。 2015,Tian和Al。 2015,Wang和Al。 2015,明和AL。 2016,Strilețchi和其他。 2016,Agrawal和Sharma 2017,Jain and Al。 2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2014年,Cycuss和Al。2014年,Lazarus和Banias 2014,Liu and Al。 2014,Pohuba和Al。 2014年,张和Al。 2014,2015,2015,JHI和AL。 2015,2015,Sharma和Al。 2015,SOH和AL。 2015,Tian和Al。 2015,Wang和Al。 2015,明和AL。 2016,Strilețchi和其他。 2016,Agrawal和Sharma 2017,Jain and Al。 2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2014年,Lazarus和Banias 2014,Liu and Al。2014,Pohuba和Al。 2014年,张和Al。 2014,2015,2015,JHI和AL。 2015,2015,Sharma和Al。 2015,SOH和AL。 2015,Tian和Al。 2015,Wang和Al。 2015,明和AL。 2016,Strilețchi和其他。 2016,Agrawal和Sharma 2017,Jain and Al。 2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2014,Pohuba和Al。2014年,张和Al。 2014,2015,2015,JHI和AL。 2015,2015,Sharma和Al。 2015,SOH和AL。 2015,Tian和Al。 2015,Wang和Al。 2015,明和AL。 2016,Strilețchi和其他。 2016,Agrawal和Sharma 2017,Jain and Al。 2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2014年,张和Al。2014,2015,2015,JHI和AL。2015,2015,Sharma和Al。 2015,SOH和AL。 2015,Tian和Al。 2015,Wang和Al。 2015,明和AL。 2016,Strilețchi和其他。 2016,Agrawal和Sharma 2017,Jain and Al。 2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2015,2015,Sharma和Al。2015,SOH和AL。 2015,Tian和Al。 2015,Wang和Al。 2015,明和AL。 2016,Strilețchi和其他。 2016,Agrawal和Sharma 2017,Jain and Al。 2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2015,SOH和AL。2015,Tian和Al。 2015,Wang和Al。 2015,明和AL。 2016,Strilețchi和其他。 2016,Agrawal和Sharma 2017,Jain and Al。 2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2015,Tian和Al。2015,Wang和Al。 2015,明和AL。 2016,Strilețchi和其他。 2016,Agrawal和Sharma 2017,Jain and Al。 2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2015,Wang和Al。2015,明和AL。 2016,Strilețchi和其他。 2016,Agrawal和Sharma 2017,Jain and Al。 2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2015,明和AL。2016,Strilețchi和其他。2016,Agrawal和Sharma 2017,Jain and Al。2017,2017,Carnalim 2017,Luo和Al。 2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2017,2017,Carnalim 2017,Luo和Al。2017,Mirza和Al。 2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2017,Mirza和Al。2017,Mišić和Al。 2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2017,Mišić和Al。2017,Schneider和Al。 2017 2017,2017,Carnalim 2018,Roopam and Singh 2018]。2017,Schneider和Al。2017,2017,Carnalim 2018,Roopam and Singh 2018]。
• 占世界排放量 45% 的国家将在 2050 年前实现碳中和 • 防止、制止和扭转生态系统退化 - 3.5 亿公顷退化的景观得到恢复 • 高雄心联盟 - 保护 30% 的陆地和海洋
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。