©Baxi Heating UK Ltd 2009保留所有权利。在每种情况下,无论是电子,机械,录制还是其他方式,都可以以任何形式或任何方式复制或通过任何形式或以任何方式传输或以任何性质的检索系统(包括在任何数据库中)来存储任何一部分,或者未经版权所有者的事先书面许可,除非具有电子,机械,记录或其他方式,否则在版权所有的事先书面许可下,除非允许在版权,设计和专利专利人,设计和专利专利范围内进行公平交易,1988年8月。
efa 函数本质上是 lavaan 函数的包装器。它生成模型语法(针对给定数量的因子),然后调用 lavaan() 将这些因子视为应旋转的单个块。该函数仅支持单个组。分类数据照常处理,首先计算适当的(例如四分法或多分法)相关矩阵,然后将其用作 EFA 的输入。还(有限地)支持两级数据。然后在内部和之间提取相同数量的因子。promax 旋转方法(取自 stats 包)仅为方便起见提供。因为 promax 是一个两步算法(首先是方差最大,然后是斜向旋转以获得简单结构),所以它不使用 gpa 或成对旋转算法,因此不提供标准误差。
I II III 因素 1 (H1):不信任他人的自我中心主义 (α=.79) 12. 人们可能会说好话,但最终他们最关心的是自己的幸福。 5.03 (1.12) .65 -.05 .00 16. 人们更有可能维护自己的权利,而不是承认他人的权利。 4.70 (1.06) .64 -.04 .00 2. 人们会做一些轻微的错事来获得自己的利益。 4.48 (1.11) .60 .08 .09 17. 人们撒谎是为了避免麻烦。 4.61 (1.08) .60 .01 .07 6. 人们撒谎是为了出人头地。 4.35 (1.21) .54 .13 .16因素 2 (H2):相信人们的诚实 (α=.70) 5. 人们通常过着诚实正直的生活 4.16 (1.17) -.11 -.70 .14 8. 人们通常诚实地与他人打交道 4.55 (1.03) .13 -.65 -.15 1. 人们基本上是诚实的 4.36 (1.19) .08 -.61 -.15 14. 人们说到做到 4.00 (1.08) -.11 -.50 .16 因素 3 (H3):不相信人们的谨慎 (α=.67) 4. 人们怀疑别人对自己很友善,因此很谨慎 3.90 (1.09) .05 -.07 .64 10. 人们认为不信任他人更安全4.03 (1.14) .13 .03 .54 13. 人们内心不愿意帮助别人 3.53 (1.10) .00 .11 .53 9. 人们很谨慎,因为他们认为有人会利用他们 4.38 (1.08) .20 -.15 .43 最大似然法,Promax 旋转 特征值 3.93 1.90 1.16 贡献率 30.3% 14.6% 8.9% 累积贡献率 30.3% 44.8% 53.7% 因子间相关性 I - 0.25 0.55 II - - 0.31
(HbO) 和脱氧 (HbR) 血红蛋白可以分别评估 HbO 和 HbR 的浓度变化。1 尽管 fNIRS 信号被认为对运动具有相对耐受性,2 但是由于运动伪影引起的光强度突然变化,数据质量可能会降低。3 结果表明,两种波长的动态特性为伪影检测和校正提供了重要信息。4 然而,当前用于运动伪影校正的技术(例如小波滤波、分解、样条插值等)通常假设两种波长的行为在时间上相似,因此无法利用两种波长提供的结构化信息。5 – 7 二维 (2D) 分析要求对具有更多维度的数据(例如 fNIRS 数据)在处理之前进行表面展开,例如分别处理两种波长或 HbO 和 HbR。因此,其中一些二维分析工具被迫施加其他非生理约束,例如主成分分析(PCA)中的正交性或独立成分分析(ICA)的统计独立性。尽管有几种方法可以实现 PCA,例如降维、分类、从信号分解的角度来看,PCA 旨在提取所谓的主成分,即可解释 fNIRS 中信号活动最大方差的成分。6、7、10、11 在时间 PCA 中,数据被分解为成分之和,每个成分由两个向量的乘积形成:一个代表时间主成分,另一个代表相应的地形(每个通道的分数)。PCA 的一个基本问题是仅由两个特征(时间和空间)定义的成分不是唯一确定的。因此,不同成分的对应时间特征之间必须具有正交性。 7、12、13然而,脑信号之间的正交性是一种非生理约束。即使有这种限制,提取的主成分也不是完全唯一的,因为任意旋转轴不会改变数据的解释方差。这导致研究人员使用不同的数学标准作为选择特定旋转的基础(例如,Varimax、Quartimax 和 Promax)。在 fNIRS 中,PCA 还被应用于目标时间间隔(tPCA),即仅在与发音或其他头部运动相关的伪影发生的期间,而不是在整个未分割的信号期间。3、14与基于小波的滤波和样条插值相比,这种类型的有针对性的校正可以产生更好的信号质量,同时也降低了改变信号整体完整性的风险。3虽然 PCA 非常常见且易于使用,一些作者已经讨论了其作为伪影校正方法的缺陷和注意事项。5、15