[8] IEEE Transl。J. Magn。日本,第1卷。2,pp。740-741,1987年8月[Digests 9年度Conf。日本磁性学,p。 301,1982]。M. Young,技术作家手册。Mill Valley,CA:大学科学,1989年。 [7] o umaima t aki; K Halil S Aadaoui; k aoutar s enhaji r hazi; y ussef m ejdoub,“ s tirling e ngine a nd s ol e nergy'Mill Valley,CA:大学科学,1989年。[7] o umaima t aki; K Halil S Aadaoui; k aoutar s enhaji r hazi; y ussef m ejdoub,“ s tirling e ngine a nd s ol e nergy'
1。简介(PDRN)由精子细胞Deonorhynchus mykiss(鲑鱼鳟鱼)Oronchorhynchus keta(鲑鱼朋友)的DNA片段衍生物组成。6 PDRN化学结构由低分子量DNA组成,范围为50至1,500 kDa。它由脱氧纤维核苷酸的线性聚合物与磷酸二酯键,其中单体单位由嘌呤和嘧啶核苷酸代表。这些聚合物链创建了双螺旋桨形的空间结构。提取和纯化过程允许恢复超过95%的纯物质。这对于确保绝对缺乏免疫反应很重要。精子是高度纯化DNA提取的最合适的来源,而没有杂质的风险,例如肽,蛋白质和脂质。6在临床实践中引入PDRN并不是什么新鲜事物,其惊人的治疗作用包括抗炎,抗凋亡,抗骨质疏松性,抗骨质,抗质发生,抗肾上腺素,抗替代性,抗稳态,抗稳态,骨再生剂,组织,组织,抗囊性损伤。,伤口的愈合和疤痕的预防作用(图1)。7–16
世界一半的人口生活在存在登革热的地区[1]。亚洲国家受到最大影响,报告了所有病例中约有70%[2]。尽管大多数感染是无症状的或轻度的,但会发生严重的登革热和死亡。登革热病毒(DENV)构成四种主要的不同血清型(DENV1-4)。一种具有一种血清型的感染可导致对该特定血清型的长期免疫力,但仅针对其他血清型的短暂免疫。第二种登革热感染是严重疾病的危险因素,但随后的感染并非如此[3]。原因尚不清楚,但通常归因于抗体依赖性增强(ADE)[4],其中交叉反应抗体形成免疫复合物,而不是中和病毒,从而导致病毒性增加和较高的SE Vere病。这种现象在登革热疫苗的发育中很重要,任何候选疫苗的疫苗应优选诱导所有四种血清型的长期免疫力。目前有两种活衰减的四位疫苗疫苗tar tar denv1-4,dengvaxia®和qdenga®。Dengvaxia®是基于黄热病主链的,于2015年引入。临床研究表明,对病毒学确认的登革热(VCD)的功效为60%[5]。但是,在随访的第三年
我们研究的目的是检验以下假设:再生胰岛衍生的蛋白3α(Reg3α)的给药,一种被描述为具有保护氧化应激和抗炎性活性的蛋白质,可以参与葡萄糖稳态的控制,并可能是对2型二世纪型糖尿病治疗的新目标。到此为止,重组人Reg3α蛋白在喂养高脂饮食的胰岛素耐药小鼠中施用一个月。我们进行了葡萄糖和胰岛素耐受性测试,测定了血浆中的循环趋化因子,并测量了胰岛素敏感组织中的葡萄糖摄取。我们证明了在ALF-5755处理的小鼠与对照中口服葡萄糖耐量测试期间胰岛素敏感性的提高,并降低了促炎性细胞因子C-X-C-C-X-C型趋化因子配体5(CXCL5)。我们还证明了骨骼肌中葡萄糖摄取的增加。最后,使用人和小鼠肌肉活检的相关研究显示肌内reg3αmRNA表达(或其鼠同工型Reg3γ)与胰岛素抵抗之间的负相关。因此,我们已经建立了概念证明,即reg3α可以通过通过骨骼肌效应提高胰岛素敏感性来治疗T2D的新分子。
目的:本研究旨在探索iNOS抑制剂在阿尔茨海默氏病(AD)中的作用,这是一种影响全球数百万的神经退行性疾病。AD的主要症状包括记忆力丧失,认知能力下降和行为改变。虽然确切原因仍然不确定,但遗传和环境因素都被认为是贡献的。最近的研究强调了一氧化氮(NO)在AD开发中的重要性。具体而言,AD患者中诱导型一氧化氮合酶(INOS)的上调导致神经元炎症,加剧AD和痴呆症的过量无产生。因此,研究重点是iNOS抑制剂作为AD治疗的新型治疗方法的潜力。结果和讨论:在本综述中,我们介绍了当前可用于阿尔茨海默氏病(AD)的治疗策略,并探讨了iNOS抑制剂在AD治疗中的潜在潜力。具体来说,我们将专注于减轻生产并检查其潜在神经保护作用的能力。此外,这项综述将概述自然和合成iNOS抑制剂,强调在开发INOS抑制剂作为AD的治疗干预措施期间安全考虑的重要性。关键字:阿尔茨海默氏病,iNOS,神经炎症,一氧化氮
tumba水果:有前途的医学资源Sanjay Kumar Acharya教授,政府。Dungar College,Bikaner Sanjayacharya66.sa@gmail.com摘要Tumba,科学称为Citrulluls colocynthis(家庭葫芦科)是一种热带水果,是亚洲,非洲和加勒比海地区的地区。 尽管主要以其烹饪应用而认可,但最近的科学研究揭示了其非凡的药用特性,将其定位为传统和现代医学中的宝贵资源。 富含光化学,具有多种生物活性化合物,包括生物碱,类黄酮,皂苷和酚类化合物。 这些化合物有助于其广泛的药理学活性,包括抗氧化剂,抗炎,抗菌,抗糖尿病和抗癌特性。 TUMBA提取物的抗氧化活性引起了人们的重大关注,因为它在打击氧化应激诱导的疾病(例如心血管疾病,神经退行性疾病和与衰老相关的疾病)中的潜力。 在关节炎,胃炎和皮炎等炎症疾病的管理中已经探索了其抗炎特性。 此外,Tumba还表现出对包括细菌,真菌和病毒在内的各种病原体的有希望的抗菌活性。 其针对多药耐药微生物的功效提出了一种令人信服的途径,可应对抗菌耐药性的全球挑战。 tumba在管理糖尿病方面的潜力也已经进行了研究,研究强调了其调节血糖水平并提高胰岛素敏感性的能力。Dungar College,Bikaner Sanjayacharya66.sa@gmail.com摘要Tumba,科学称为Citrulluls colocynthis(家庭葫芦科)是一种热带水果,是亚洲,非洲和加勒比海地区的地区。尽管主要以其烹饪应用而认可,但最近的科学研究揭示了其非凡的药用特性,将其定位为传统和现代医学中的宝贵资源。富含光化学,具有多种生物活性化合物,包括生物碱,类黄酮,皂苷和酚类化合物。这些化合物有助于其广泛的药理学活性,包括抗氧化剂,抗炎,抗菌,抗糖尿病和抗癌特性。TUMBA提取物的抗氧化活性引起了人们的重大关注,因为它在打击氧化应激诱导的疾病(例如心血管疾病,神经退行性疾病和与衰老相关的疾病)中的潜力。在关节炎,胃炎和皮炎等炎症疾病的管理中已经探索了其抗炎特性。此外,Tumba还表现出对包括细菌,真菌和病毒在内的各种病原体的有希望的抗菌活性。其针对多药耐药微生物的功效提出了一种令人信服的途径,可应对抗菌耐药性的全球挑战。tumba在管理糖尿病方面的潜力也已经进行了研究,研究强调了其调节血糖水平并提高胰岛素敏感性的能力。此外,初步研究表明,其在抑制癌细胞增殖中的作用,为开发新型抗癌疗法提供了途径。此外,TUMBA提取物已显示出肝保护性,肾脏保护性和神经保护作用,表明其在保护重要器官免受毒素,污染物和代谢性疾病造成的损害方面的潜力。尽管有很有希望的发现,但仍需要进一步的研究来阐明Tumba的药用特性的基础机制并优化其治疗应用。提取方法的标准化,活跃化合物的鉴定以及严格的临床试验对于利用这种药用果实的全部治疗潜力至关重要。总而言之,Tumba在天然医学领域成为了引人注目的候选人,提供了多种药理活性的多种生物活性化合物。将其整合到医疗保健实践中有望应对各种健康挑战和改善人类福祉。
及早使用靶向放射性核素疗法 (TRT) 根除播散性肿瘤细胞 (DTC) 可能治愈肿瘤。需要选择合适的放射性核素。这项工作强调了 103 Pd(T 1/2 = 16.991 d)衰变为 103m Rh(T 1/2 = 56.12 min)然后衰变为稳定的 103 Rh 并发射俄歇电子和转换电子的潜力。方法:使用蒙特卡洛径迹结构代码 CELLDOSE 评估单个细胞(直径 14 μ m;细胞核 10 μ m)和 19 个细胞簇中的吸收剂量。放射性核素分布在细胞表面、细胞质内或细胞核内。在能量归一化后比较了 103 Pd、177 Lu 和 161 Tb 的吸收剂量。研究了非均匀细胞靶向的影响以及双重靶向的潜在益处。如果直接使用 103m Rh,则会提供与其相关的其他结果。结果:在单个细胞中,根据放射性核素的分布,103 Pd 比 177 Lu 传递的核吸收剂量高 7 到 10 倍,膜剂量高 9 到 25 倍。在 19 个细胞簇中,103 Pd 的吸收剂量也大大超过 177 Lu。在这两种情况下,161 Tb 都位于 103 Pd 和 177 Lu 之间。考虑到簇内有四个未标记的细胞,非均匀靶向会导致中度至重度剂量异质性。例如,对于核内 103 Pd,未标记的细胞仅接受预期核剂量的 14%。使用两种 103 Pd 标记放射性药物进行靶向可最大限度地减少剂量异质性。结论:103 Pd 是新一代俄歇发射源,它能够向单个肿瘤细胞和细胞簇发射比 177 Lu 更高的吸收剂量。这可能为 TRT 在辅助或新辅助治疗中的应用,或针对微小残留病灶开辟新视野。
位于南部地区的 11 家大型人工智能公司(NXP、法航荷航、Orange、Amadeus、IBM 等)决定共同合作,并在人工智能研究工业委员会 (ICAIR) 的背景下汇集他们的发现。
无线电力传输 (WPT) 这项新兴技术的快速发展使得能量受限的无线传感器网络 (WSN) 能够通过移动充电机器人持续为传感器的电池充电。之前的方案是移动充电器 (MC) 不管网络中的每个传感器节点 (SN) 的能量状态如何,都定期访问并为其充电,而当前的趋势是使用一种更高效的充电方案,即按需充电方案。在按需充电方案中,当电池能量低于预设阈值时,MC 只会访问并给少数转发了充电请求的 SN 充电。然而,由于 WSN 的能耗动态性,设计按需无线充电方案仍然是一个具有挑战性的研究问题。本文探讨了按需无线充电方案的一些最新设计问题以及相应的性能评估指标。虽然近年来研究人员已经提出了许多高效的按需充电方案,但仍然存在一些限制,例如可扩展性、MC 的高能耗以及 SN 的充电延迟延长,如果不通过研究充分解决这些问题,可能会限制网络的性能效率和寿命。
