。CC-BY 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2024年2月4日发布的此版本中显示在版权持有人中的预印本。 https://doi.org/10.1101/2024.02.01.578414 doi:Biorxiv Preprint
细菌持久细胞是高度耐受性抗生素的休眠表型变体的亚群,对感染控制提出了重大挑战。研究抗生素持久性的机制对于制定有效的治疗策略至关重要。在这里,我们发现了耐受性频率与先前感染的牛乳腺炎之间的显着关联。上一个。金黄色葡萄球菌感染导致s。金黄色葡萄球菌耐受性在随后在体内和体外感染中被利福平杀死。实际上,受过训练的免疫的激活导致s的利福平持久性。金黄色葡萄球菌在继发性感染中,降低了抗生素治疗的有效性和疾病严重程度的增加。机械,我们发现S。金黄色的持久性是由受过训练的免疫力引起的富马酸盐的积累来介导的。与二甲双胍和利福平的组合疗法促进了消灭持久性的疗法,并提高了经常性s的严重程度。金黄色葡萄球菌感染。这些发现提供了对训练的免疫与S之间关系的机械洞察力。金黄色的持久性,同时提供概念证明,表明训练的免疫是涉及持续病原体的复发细菌感染中的治疗靶标。
膀胱滴注疗法是浅表或非肌肉浸润性膀胱癌的常见治疗方法。手术或清理后,化学疗法药物(表纤维素)或药物(例如杆菌Calmette-guérin(BCG))用于膀胱滴注疗法,这可以降低膀胱癌复发和进展的风险。但是,尚未透露BCG刺激抗肿瘤反应的特定机制。此外,尽管BCG免疫疗法有效,但很难预测哪些患者将具有阳性反应。在这项研究中,我们探索了BCG诱导的免疫反应,发现高水平的与FMS相关的受体酪氨酸激酶3配体(FLT3LG)在BCG处理后表达了。该FLT3LG可以直接作用于CD8 + T细胞并促进其增殖和激活。使用FLT3抑制剂可以中和BCG的抗肿瘤作用。体外实验表明,FLT3LG可以与T细胞受体激活剂协同作用,以促进肿瘤衍生的T细胞的激活。这项研究部分阐明了BCG免疫疗法中CD8 + T细胞激活的机制,并为优化BCG灌输疗法提供了膀胱癌
背景和目的:饮食纤维主要由肠道菌群发酵,但它们在结直肠癌(CRC)中的作用在很大程度上不清楚。在这里,我们研究了小鼠中大肠肿瘤发生不同纤维的关联。方法:APC最小/Þ小鼠和C57BL/ 6小鼠,含有偶氮甲烷(AOM)注射作为CRC小鼠模型。小鼠以混合的高纤维饮食(20%的可溶性纤维和20%的不溶性纤维饮食),高含因饮食,高蛋白质胶饮食,高纤维素饮食或不同含量剂量的饮食喂食。菌种 - 无小鼠用于验证。粪便菌群和代谢产物分别由shot弹枪宏基因组测序和液相色谱法 - 质谱分别为主导。结果:混合的高纤维饮食促进了结直肠肿瘤的发生,并且在AOM处理和APC最小小鼠中肿瘤数量和肿瘤负荷增加。抗生素使用
Benjamin B. Johnson, 1 Marie-Victoire Cosson, 2,3,9 Lorenza I. Tsansizi, 2,3,9 Terri L. Holmes, 1 Tegan Gilmore, 2 Katherine Hampton, 1 Ok-Ryul Song, 2,4 Nguyen TN Vo, 5 Aishah Nasir, 5 Alzbeta Chabronova, 6 Chris Denning, 5 Mandy J. Peffers, 6 Catherine LR Merry, 5,7 John Whitelock, 5,8 Linda Troeberg, 1 Stuart A. Rushworth, 1 Andreia S. Bernardo, 2,3, * 和 James GW Smith 1,10, * 1 诺维奇医学院代谢健康中心,东英吉利大学,诺维奇研究园,诺维奇 NR4 7UQ,英国 2 弗朗西斯·克里克研究所,伦敦 NW1 1AT,英国 3 NHLI,伦敦帝国理工学院,伦敦,英国 4 高通量筛选科学技术平台,弗朗西斯克里克研究所,伦敦 NW1 1AT,英国 5 医学院,再生和建模组织,生物发现研究所,诺丁汉大学公园分校,诺丁汉 NG7 2RD,英国 6 生命历程和医学科学研究所,威廉亨利邓肯大厦,西德比街 6 号,利物浦 L7 8TX,英国 7 医学生物化学和微生物学系,乌普萨拉大学,瑞典乌普萨拉 8 新南威尔士大学生物医学工程研究生院,悉尼,新南威尔士州 2052,澳大利亚 9 这些作者贡献相同 10 主要联系人 * 通信地址:a.bernardo@imperial.ac.uk (ASB),jgsmith@uea.ac.uk (JGWS) https://doi.org/10.1016/j.celrep.2023.113668
CC 趋化因子配体 5 (CCL5) 是 CC 基序趋化因子家族的成员,该家族还包括巨噬细胞炎症蛋白 1 α (MIP-1 α ) 和巨噬细胞炎症蛋白 1 β (MIP-1 β ) (10-12)。CCL5 具有高亲和力,主要与其受体 CC 趋化因子受体 5 型 (CCR5) 以及 CCR1、CCR3、CCR4、CD44 和 GPR75 (13-15) 结合。CCL5 还通过激活核因子 κ -轻链增强子 (NF- κ B) 参与 B 细胞增殖 (16)。该蛋白在 T 淋巴细胞、巨噬细胞、血小板、滑膜成纤维细胞、小管上皮细胞和肿瘤细胞中表达 (17)。根据最近的研究,CCL5通过增强肿瘤转移(18)和重塑细胞外基质来促进肿瘤进展,从而支持肿瘤干细胞扩增(19),导致肿瘤细胞产生耐药性(20),降低DNA损伤因子的细胞毒性,减轻细胞代谢重编程(21),增加血管生成,动员免疫细胞(22),诱导巨噬细胞极化以抑制免疫反应(23)。然而,CCL5在BC中的潜在机制仍不清楚。
1。中国150001的哈尔滨医科大学第四家附属医院普通外科系。2。Bio-Bank of Perstomer Surgery系,Harbin Harbin,Harbin,150001,中国哈尔滨医科大学的第四家医院。3。中国150001的哈尔滨医科大学生物化学与分子生物学系。4。Harbin医科大学,Harbin 150001,Harbin医科大学编辑委员会。 5。 中国哈尔滨技术学院医学与健康学院,中国150001。 6。 Heilongjiang儿童发展与遗传研究的主要实验室,Harbin医科大学,Harbin,150001,中国。 7。 Harbin理工学院生命科学与技术学院,Harbin,150001,中国。 8。 哈尔滨商务大学的药物工程技术研究中心,哈尔滨,150001,中国。 9。 圣约翰学院威廉·尼科尔斯(William Nicholls Drive),旧圣梅伦斯(St Mellons),加的夫(Cardiff),CF35YX,英国。Harbin医科大学,Harbin 150001,Harbin医科大学编辑委员会。5。中国哈尔滨技术学院医学与健康学院,中国150001。6。Heilongjiang儿童发展与遗传研究的主要实验室,Harbin医科大学,Harbin,150001,中国。 7。 Harbin理工学院生命科学与技术学院,Harbin,150001,中国。 8。 哈尔滨商务大学的药物工程技术研究中心,哈尔滨,150001,中国。 9。 圣约翰学院威廉·尼科尔斯(William Nicholls Drive),旧圣梅伦斯(St Mellons),加的夫(Cardiff),CF35YX,英国。Heilongjiang儿童发展与遗传研究的主要实验室,Harbin医科大学,Harbin,150001,中国。7。Harbin理工学院生命科学与技术学院,Harbin,150001,中国。 8。 哈尔滨商务大学的药物工程技术研究中心,哈尔滨,150001,中国。 9。 圣约翰学院威廉·尼科尔斯(William Nicholls Drive),旧圣梅伦斯(St Mellons),加的夫(Cardiff),CF35YX,英国。Harbin理工学院生命科学与技术学院,Harbin,150001,中国。8。哈尔滨商务大学的药物工程技术研究中心,哈尔滨,150001,中国。9。圣约翰学院威廉·尼科尔斯(William Nicholls Drive),旧圣梅伦斯(St Mellons),加的夫(Cardiff),CF35YX,英国。
You are: + an exceptionally motivated PhD candidate with a keen interest in interdisciplinary teamwork and science that nurtures the precise, personalized, predictive and preventive medicine of the future + excellent in writing and speaking English + a candidate with (or obtaining by September 2024) a final degree in medicine, biology, chemistry, bioinformatics, computer science, engineering, physics, mathematics or a similar subject (minimum requirement is a具有荣誉的四年学士学位)研究领域2024 CEMM博士学位计划将重点关注感染,免疫,代谢,癌症,罕见疾病,网络医学,设计化学,患者衍生的器官和衰老研究的主题领域。这些区域建立在表观遗传学和基因组完整性,生物信息学和系统生物学,高通量遗传学,基因组学和蛋白质组学,分子和细胞生物学,高含量自动成像,化学生物学和有机化学化学合成的支柱上。
使用人工智能和机器学习进行服务建模和绩效管理 Sumanth Tatineni 摘要:在不断变化的现代商业环境中,有效的绩效管理仍然是组织成功的重要一步。研究人工智能和机器学习的变革性影响至关重要,它们重塑了服务计算中的传统建模方法和绩效管理实践。这是本文的目标。此外,本文还探讨了人工智能和机器学习促进的从静态到动态服务模型的转变,强调服务交付带来的增强的适应性和敏捷性。本文重新定义了使员工与组织目标保持一致并优化其绩效的传统方法。传统上,绩效管理侧重于使员工与公司目标保持一致。然而,人工智能技术带来了转变,使组织能够利用大量数据集来提高绩效、数据驱动的决策并促进员工发展。在数据驱动的洞察力很重要的时候,人工智能可以处理大量数据,这是绩效管理的一个关键方面。集成人工智能可促进绩效管理流程,从而提高准确性、客观性和效率,并提供一系列通过传统方法可能无法实现的趋势和模式。另一方面,传统方法(例如人工智能驱动的流程)促进了持续的数据评估和收集,从而确保了实时反馈并通过个性化的培训建议支持员工成长。本文全面探讨了人工智能和机器学习在塑造服务建模和绩效管理实践中的作用,从而为组织提供了充分利用这些技术在服务计算方面的潜力的路线图。关键词:服务建模、绩效管理、服务计算中的人工智能、预测分析、数据驱动的洞察、机器学习应用、自动化服务优化 1. 简介 人工智能和机器学习模型的成功与数据质量息息相关。当考虑到这些模型的次优性能时,这种联系的重要性变得更加重要。劳动力绩效与整体成功之间的相关性强调了对服务计算有效绩效管理的必要性 [1]。员工活动和动机与战略的无缝结合对于组织的发展至关重要。管理方法的演变凸显了对优化个人和团队绩效的持续关注。人工智能正在利用基于云的人工智能服务来重塑不同的行业和业务运营,为从事服务计算的企业挖掘机遇。结合可扩展、高效且经济高效的基于云的人工智能服务 [2],该模型无缝地实现了服务计算中的有效性能管理。它结合了推进人工智能应用的关键方面,例如数据收集和处理,从而导致了机器学习模型的创建。这些模型和高级算法对于优化服务计算方面的服务建模和性能管理非常重要。此外,人工智能服务结合了自然语言处理 (NLP)、计算机视觉和语音识别,从而弥合了人类语言理解和视觉数据解释之间的差距。模型。本文深入探讨了人工智能和机器学习如何优化服务计算中的服务建模和性能管理。它描述了这些技术如何重塑已知的传统方法,从而为服务交付带来适应性、效率和敏捷性,以帮助