为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
当我们要明确显示参数时,我们还会称呼SETωA(L,γ) - 厚度。厚度集的定义来自对不确定性原理的研究,并在[KOV01]中引入了名称。在[KOV01]之前,一些非常相似的概念,例如,例如提出了[KAC73]中的相对密集集。(2)当ρ=ρs时,我们只能假设ωsatis -for(1.2)来放松上述定义。 X |足够大。的确,如果仅适用于| |的ωsatis(1.2),则令A> 0和ω⊂r仅用于| X | ≥A,然后我们可以选择一个足够大的新L和一个新的γ较小,以使得定义1.2定义定义的类型(ρs,τ)厚度(ρs,τ)。这种缩放方法基本与第2.1款中引理2.2的证明相同。现在我们可以陈述我们的第一个零可控性结果:
上下文。自适应光学器件(AO)是一种允许地面望远镜的角度分辨率的技术。波前传感器(WFS)是此类系统的关键组成部分之一,驱动基本的性能限制。目标。在本文中,我们专注于特定类别的WFS:傅立叶过滤波前传感器(FFWFSS)。此类以其极高的灵敏度而闻名。然而,缺乏任何类型的FFWF的清晰而全面的噪声传播模型。方法。考虑到读出的噪声和光子噪声,我们得出了一个简单而全面的模型,使我们能够了解这些噪声如何在线性框架中的相重建中传播。结果。这种新的噪声传播模型适用于任何类型的FFWF,它允许人们重新审视这些传感器的基本灵敏度极限。此外,还进行了广泛使用的FFWFSS之间的新比较。我们专注于使用的两个主要FFWFS类:Zernike WFS(ZWFS)和金字塔WFS(PWFS),从而带来了对其行为的新理解。
摘要。我们考虑了一般的McKean-Vlasov随机分化方程,该方程是由旋转变体α-稳定过程驱动的,α∈(1,2)。我们假设分支系数是身份矩阵,并且漂移是有界的,并且在某种意义上,相对于空间和测量变量,Hölder是连续的。这项工作的主要目标是证明相关均值相互作用粒子系统的混乱估计值的新弱传播。我们还对一个粒子的密度与限制麦基恩 - 维拉索夫SDE的密度之间的差异建立了一个重点控制。我们的研究依赖于与麦凯恩·维拉索夫(McKean-Vlasov)随机差异方程相关的正规化支持和半群的动力学,该方程的作用于在pβ(r d)上定义的函数,概率的空间在r d上具有r d的概率测量空间。更准确地说,半群的动力学是由在条[0,t]×pβ(r d)上定义的向后的kolmogorov偏差方程来描述的。
准确的分子特性预测对于药物发现和计算化学至关重要,促进了有希望的化合物并加速治疗性发育的鉴定。传统的机器学习以高维数据和手动特征工程的速度失败,而现有的深度学习方法可能不会捕获复杂的分子结构,而留下了研究差距。我们引入了深CBN,这是一个新型框架,旨在通过直接从原始数据中捕获复杂的分子表示来增强分子性质预测,从而提高了准确性和效率。我们的方法论结合了卷积神经网络(CNN)和biforter注意机制,同时采用了前向算法和反向传播。该模型分为三个阶段:(1)功能学习,使用CNN从微笑字符串中提取本地特征; (2)注意力完善,通过向前前锋算法增强的Biforter模块捕获全球环境; (3)预测子网调整,通过反向传播进行微调。对基准数据集的评估 - 包括TOX21,BBBP,SIDE,Clintox,Clintox,Bace,HIV和MUV,表明深-CBN达到了近乎完美的ROC-AUC分数,显着超过了最好的State-Art-Art方法。这些发现证明了其在捕获复杂分子模式的有效性,提供了一种强大的工具来加速药物发现过程。
使用多层结构实现了空气中正极表面等离子体在空气中的均匀传播,该结构由硅晶片组成,由1 µm厚的介电SiO 2层作为传播表面覆盖。而不是在使用常规散装电介质表面时在相同条件下观察到的分支流媒体,该等离子体表现出具有高度可重复性和稳定性的同质环形结构。血浆是通过在接触介电表面的钨电线上施加纳秒正脉冲来产生的。血浆以高空间分辨率进行单射击操作成像,紫外反射显微镜以及快速加强的电荷耦合耦合器件摄像头。时间和空间分辨的光学发射光谱表明,均匀的环对应于具有高N 2 + *发射区域的电离前端的传播。我们讨论了环形电离波的起源,考虑到Si-Sio 2界面的作用以及外部光源照明的效果。环电离波可能是由于分支抑制作用而导致的,这是由于在血浆发出的光子产生的界面处的光电效应。在大气压力下的环境空气中,稳定均匀的表面电离波的产生可能引起进一步的晚期等离子表面相互作用研究或流动控制应用。
d≥2的可能具有正(d -1)-hhusdor效法。 在[LM18,定理5.1]中也获得了一些(d -1 -δ)-hhusdor e含量的梯度的传播。 作为|∇u |的零在[NV17]中显示了有限的(d -2) - hausdor效法,在[LM18]中猜测是|∇u |的结果。应预期从任何δ> 0的正(d -2 +δ) - huusdor e含量中保留。 到现在为止,这个猜想仍然开放。 然后,本文的第一个目标是将Malinnikova的结果扩展到Schrödinger类型方程(1.1)。 在[LM18]相同的环境中,以完全的一般性获得了小型溶液的传播。 另一方面,仅在特定环境中得出了梯度小的传播。 的确,人们不能期望在完全普遍的情况下为(1.1)梯度传播小额的繁殖,因为如[hhohon99,备注p。 362],r d的每个闭合子集都可能是这种函数的关键集,因此也没有希望从一组(d -1 -1 -δ) - hausdor效应的集合中传播小的内容,即使对于小δ> 0。 尽管如此,我们的特殊结果对于我们接下来描述的光谱估算的应用程序很充分。可能具有正(d -1)-hhusdor效法。在[LM18,定理5.1]中也获得了一些(d -1 -δ)-hhusdor e含量的梯度的传播。作为|∇u |的零在[NV17]中显示了有限的(d -2) - hausdor效法,在[LM18]中猜测是|∇u |的结果。应预期从任何δ> 0的正(d -2 +δ) - huusdor e含量中保留。到现在为止,这个猜想仍然开放。然后,本文的第一个目标是将Malinnikova的结果扩展到Schrödinger类型方程(1.1)。在[LM18]相同的环境中,以完全的一般性获得了小型溶液的传播。另一方面,仅在特定环境中得出了梯度小的传播。的确,人们不能期望在完全普遍的情况下为(1.1)梯度传播小额的繁殖,因为如[hhohon99,备注p。 362],r d的每个闭合子集都可能是这种函数的关键集,因此也没有希望从一组(d -1 -1 -δ) - hausdor效应的集合中传播小的内容,即使对于小δ> 0。尽管如此,我们的特殊结果对于我们接下来描述的光谱估算的应用程序很充分。
L Direct distance between the trap and the starting point of hydrocarbon migration below the seal l Power of power-law shape of stringer M Mass of expulsed gas m, n Powers in the self-similar solution p Pressure p H Pressure of the reference point on z-axis Q Gas injection rate R Equilibrium gas concentration in water r Defined power as a function of l s cw Connate water saturation s gr Residual gas saturation t Time T Injection period during the pulse injection t D无量纲的时间U气速/通量U气体速率w水速度的模块W水辅助气体速度X沿密封X D无量纲坐标沿密封无量音坐标沿密封轴与水平轴之间的密封α角βββββββββββ型ββ的电力范围之间的量在水和气体之间
1。上海哥郡上海胸部医院核医学系,上海大学医学院,上海,200025年,中国。2。上海分子成像的主要实验室,吉亚丁地区中央医院隶属上海大学医学与健康科学大学,上海201318,中国。3。美国德克萨斯州休斯敦休斯顿卫理公会研究所纳米医学系77030,美国。 4。 干细胞生物学与工程实验室,纽约血液中心,纽约,纽约,10065,美国。 5。 上海哥顿上海综合医院肿瘤学系,上海大学医学院,上海200080,中国。 6。 癌症研究所核医学系上海癌症中心,上海200032,中国。 7。 福丹大学上海癌症中心病理学系,上海,200032年,中国。 8。 美国休斯顿休斯顿卫理公会医院外科部,美国德克萨斯州77030,美国。 9。 美国休斯顿休斯顿卫理公会医院放射肿瘤学系,美国德克萨斯州77030,美国。美国德克萨斯州休斯敦休斯顿卫理公会研究所纳米医学系77030,美国。4。干细胞生物学与工程实验室,纽约血液中心,纽约,纽约,10065,美国。5。上海哥顿上海综合医院肿瘤学系,上海大学医学院,上海200080,中国。6。癌症研究所核医学系上海癌症中心,上海200032,中国。7。福丹大学上海癌症中心病理学系,上海,200032年,中国。8。美国休斯顿休斯顿卫理公会医院外科部,美国德克萨斯州77030,美国。9。美国休斯顿休斯顿卫理公会医院放射肿瘤学系,美国德克萨斯州77030,美国。
如今,协调可用的能量向量对于满足征服要求的要求至关重要。尽管有明显的努力来改善现有网络,但不确定性处理和组织挑战仍然难以应对。本论文旨在通过解决这些问题来填补这一空白,特别着重于减轻不确定性对小型多能网络最佳设计和运营管理的影响。在这种情况下,不确定性以多种方式影响性能。该项目通过小型多能网络的最佳尺寸/操作重点进行。在技术层面上,最重要的是与资源可用性有关的,这对于基于可再生的系统至关重要。用户的行为和能源市场是影响整体表现的其他(不确定的)因素。现有方法分别解决了这些问题,但我们的目标是制定利用辅助技术,存储,供应商和外部客户的综合政策,以提高多能网络设计和操作灵活性的弹性。这可以增加经济,环境甚至社会的影响,从而影响决策者和利益相关者的利益。