文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日
主题:675 签名和计件记录服务目的:强调《军事货运统一规则出版物-1》(MFTURP-1)中概述的签名和计件记录 (675) 货物运输要求。请注意:授予 675 货物运输的托运人应提醒运输服务提供商 (TSP) 提供自有或租赁的设备。根据 MFTURP-1 第 69 (10) 条,“TSP 应提供公司自有资产或长期租赁的车辆,不包括行程租赁和经纪卡车。为进行验证,托运人应要求 TSP 提供其当前 IRP 分配注册 CAB 卡(CAB 卡)的副本。在 CAB 卡上,托运人将核实 TSP 是否列在“安全责任”(可能由汽车承运人或承运人处理)或“汽车承运人”下,这可能会根据车辆注册的州而变化。此外,车辆上的牌照必须与该卡上列出的牌照相匹配。”检查 CAB 卡将确定车辆是否正确拥有或租赁。未能提供与 BOL 上的名称相关的设备的 TSP 不应装载。承运人绩效模块 (CPM) 中的文件故障为服务故障代码 F2(设备不当或不足)。对于没有授予 TSP 名称的被拒绝设备,无需支付车辆完工未使用 (VFN)。注意:需要 675 服务或任何其他运输保护服务 (TPS) 的货物不能被经纪或张贴到任何装载/经纪人板上,如 MFTURP-1 的承运人绩效和评估计划 (CPEP) 所述。托运人应使用代码“FL—未经授权的装载/经纪人板张贴”在 CPM 中记录任何未经授权的装载/经纪人板张贴事件。TSP 的重复张贴或服务故障模式将导致全国范围内不使用或从 DOD 计划中移除。SDDC POC:有关此咨询的问题可以发送到:usarmy.scott.sddc.mbx.carrier-performance@army.mil。到期:N/A 类别:DTR/MFTURP-1/政策
ISDA 衍生品未来领袖发布生成性人工智能白皮书 东京,2024 年 4 月 18 日——国际掉期和衍生品协会 (ISDA) 今天发布了 ISDA 衍生品未来领袖 (IFLD) 的白皮书,这是其针对衍生品市场新兴领袖的专业发展计划。白皮书《衍生品市场中的 GenAI:未来视角》由第三批 IFLD 参与者制定,他们于 2023 年 10 月开始合作。该小组的 38 名成员代表来自世界各地的买方和卖方机构、律师事务所和服务提供商。在被选中参加 IFLD 计划后,他们被要求与利益相关者接触,发展立场并制作一份关于生成性人工智能 (genAI) 在场外衍生品市场中潜在用途的白皮书。参与者还可以使用 ISDA 的培训材料、资源和员工专业知识,以支持该项目和他们自己的专业发展。白皮书借鉴行业专业知识和学术研究,确定了衍生品市场中 genAI 的一系列潜在用例,包括文档创建、市场洞察和风险分析。它还探讨了主要司法管辖区的监管问题,并解决了使用 genAI 所带来的挑战和风险。本文最后提出了一系列针对利益相关者的建议。这些建议包括投资人才发展、促进与技术提供商的合作和知识共享、优先考虑道德 AI 原则以及与政策制定者合作以促进适当的监管框架。ISDA 首席执行官 Scott O'Malia 表示:“人工智能的快速发展引起了金融市场和整个社会的广泛关注。随着技术的进步,genAI 有很大机会支持衍生品市场更高效、数据驱动的决策,但我们需要谨慎对待,确保正确处理该技术的影响和风险。在考虑未来的机遇和挑战时,需要新的视角,因此我赞扬 IFLD 完成这份文件,它为这个快速发展的话题做出了宝贵贡献。” “今年的 IFLD 小组来自不同的机构和司法管辖区,我们在过去六个月中共同探索 genAI 在全球衍生品市场的发展。很明显,这项技术有可能为多个行业流程增加重大价值。我们希望这份报告能够帮助市场参与者、政策制定者和其他利益相关者利用这项技术并应对相关挑战,”IFLD 参与者、瑞穗交易对手投资组合管理部门总监 Takuya Otani 表示。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
视频人工智能系统的成本和收益如何?视频人工智能:初始成本和长期收益 投资人工智能是许多公司经常谈论的事情。但您实际上投资的是什么?成本是多少?长期收益是什么?在本白皮书中,我们将解释如何以及为何投资视频人工智能。 为什么要投资视频人工智能?主要原因是视觉图像包含非常重要的数据。通过使用这些数据,您可以作为一家公司脱颖而出,目标是为您的客户提供更好的解决方案。 通过投资视频人工智能 (Video AI),您可以从视频数据中获得正确的智能信息。简而言之,人工智能 (AI) 以高度智能的方式识别、分类和索引镜头。在此基础上,可以搜索、编辑和量化收集和分类的数据。人工智能软件实时处理视频数据,以便您可以在发生检测警报时快速评估和响应。此外,可以轻松检索现有视频片段。因此,您可以快速搜索数千小时的镜头以查找所需的事件。当 AI 系统识别、分类和索引素材时,会产生额外的数据。从长远来看,这些收集到的元数据可以成为有价值的商业智能的额外来源。可以使用各种商业智能工具清晰地以图形方式显示这一点。当您考虑实施视频 AI 系统时,重要的是要正确评估总购置成本。换句话说,就是总拥有成本 (TCO)。当然,这些成本会根据每个组织的独特需求和情况而有所不同。本白皮书将概述系统要求、基础设施、网络和实施方面的各种实施因素和相关成本考虑因素。以及该产品可以提供的巨大长期节省。系统要求视频 AI 是一种智能软件技术,但为了使软件正常运行,外围设备必须到位。提前清楚了解所需的系统要求非常重要。IP 摄像机的数量、所需的 AI 功能以及安装类型(本地、远程或云)的组合决定了所需的系统要求。一些视频 AI 平台易于与已安装的 IP 摄像机结合使用。在销售过程中提出这一点很重要,因为它会影响初始投资。一个好的视频 AI 实施合作伙伴可以就所需的硬件为您提供建议。为了达到预期的效果,确定摄像机的类型和摄像机的位置非常重要。基础设施视频 AI 解决方案的基础设施因需求而异。有些人希望为多个位置提供集成解决方案,而其他人可能会考虑将视频 AI 用于单个位置。IP 摄像机、AI 服务器和 NVR/VMS 系统都可以位于一个物理位置本地,也可以位于多个物理位置。将物理位置上的摄像机与(公共)云中的软件相结合也是可能的。同样,正确的 AI 实施合作伙伴的作用非常重要。
扔进垃圾桶的未使用处方药可能会被找回并被滥用或非法出售。冲走的未使用药物会污染水源。妥善处理未使用的药物可以挽救生命并保护环境。
用于表征飞机机身撞击损伤的光学工具 N.Fournier 1 – F. Santos 1 - C.Brousset 2 – JLArnaud 2 – JAQuiroga 3 1 NDT 专家,2 AIRBUS France,3 Universidad Cmplutense de Madrid 摘要:在飞机制造/组装过程中或交付后的使用中,机身外部可能会出现表面损伤。大多数此类缺陷与飞机尺寸相比都很小,通常分布在机身的整个表面。为了正确表征这类异常,无损检测领域一直需要新手段。它们需要可靠、便携、快速和准确。对于此类缺陷,光学技术通常可以提供好的解决方案。然后,开发了基于光学的新技术来满足飞机制造商对损伤表征的要求。具体来说,我们开发了一种基于阴影莫尔效应的便携式设备,用于表征飞机机身撞击损伤的精确几何形状。该系统易于使用、便携、快速且成本低廉。它将有助于操作员对缺陷进行分类,并在检查过程中节省大量时间。经过一段时间的测试后,该设备应在飞机的总装线上使用。1 – 简介:在航空领域,国家和国际机构都要求制造商、航空公司和维修机构严格遵守有关飞机安全和保障的现行规定。飞机的结构在使用过程中承受着巨大的机械负荷,每个部件都有确定的使用寿命。必须定期检查零件以检查其可用性,并在其整个使用寿命期间安排系统的无损检测。当发生损坏时,必须对面板进行额外的控制,以确保其完整性以便继续使用。结构复杂性的增加以及为提高机械性能和减轻结构重量而使用的新材料导致了新的控制手段的不断发展。这些工具必须与旧工具一样高效,更快、更准确、更自动化,并且对人为解释的限制性更强。这种演变是航空业所有参与者遵循的整体质量战略的一部分。在所有可能影响结构完整性的损坏中,意外表面凹痕是最受监控的损坏之一:必须控制受影响的区域,以确保不会产生裂纹、分层或剥离。在进行任何更深的无损检测控制之前,操作员必须评估表面和深度损坏的严重性。制造商的设计办公室会给出公差,以根据这些标准将损坏分类,从而确定后续操作。然后,控制员必须恢复凹痕的精确几何形状,主要有两个原因:帮助他们对损坏进行分类,并帮助设计办公室确定受影响结构的新机械属性(当凹痕几何形状足够关键以运行此类程序时)。2 - 凹痕表征工具:Moireview©:开发了一种新工具来满足凹痕表征方面的需求。该系统基于光学,可以检索受影响区域的 3D 形状。它的开发是对目前使用的机械手段(深度计、粗糙度仪……)的补充。此工具的基本规格是快速、自主、便携和易于使用。负责检查的操作员必须在飞机周围走动以检测损坏情况,并可能从地面、平台或发动机舱进行测量。此后,他们应该能够携带该工具进入难以接近的区域。考虑到飞机的整个表面,与相对较小的凹痕(可能有很多且遍布整个飞机)相比,系统必须快速,以便在合理的时间内完成完整的检查。最后,考虑到设计办公室给出的公差,该工具必须足够精确。
