制造了抽象的高密度聚乙烯(HDPE)基于基于三种不同类型的石墨烯纳米纤维素(GNP)的纳米复合材料(GNP),以研究GNP的尺寸效应,以横向大小和厚度对形态,热,电气和机械性质的侧向尺寸和厚度。结果表明,GNP的包含增强了基于HDPE的纳米复合材料的热,电和机械性能,而不论GNP大小如何。然而,使用较大的侧向大小的GNP实现了热导电和最低电渗透阈值的最显着增强。这可能归因于以下事实:较大的侧向尺寸的GNP在HDPE中表现出更好的分散体,并形成了在扫描电子显微镜(SEM)图像中易于观察到的诱导途径。我们的结果表明,与其厚度相比,GNP的横向大小是上述纳米复合材料的更调节因素。对于给定的侧向尺寸,较薄的GNP显示出明显更高的电导率,并且渗透阈值低于较厚的电导率。另一方面,就热导率而言,仅在某个填充浓度上方观察到了显着的增强。结果表明,与其他相比,由于分散度较差,横向尺寸较小且厚度较大的GNP会导致样品机械性能的增强。另外,GNP的尺寸对HDPE/GNP纳米复合材料的熔化和结晶特性没有相当大的影响。
由伤口碳纳米管纤维制成的链和电缆的理论机械性能 / Migliaccio,Giovanni;雷金纳德(Reginald)des Roches; Royer-Carfagni,Gianni。- 在:国际机械科学杂志。- ISSN 0020-7403。- (2022)。[10.1016/j.ijmecsci.2022.107706]
©作者2024,更正的出版物2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
植物通过抑制小污染物的α-葡萄糖苷酶来预防糖尿病[6],抑制唾液腺α-淀粉酶[7],增强胰岛素分泌[8],减少HBA1C和糖化的Plasma蛋白[9],增加了葡萄糖型胰蛋白肽-1,并升高了胰蛋白肽-1,并降低了葡萄糖般的肽-101010010010] [10] 10]Sage(Salvia officinalis L.)是属于Labiatae/Lamiaceae家族的多年生圆形灌木[11]。它因其抗氧化特性而被广泛认可,并且已经鉴定出最活跃的成分[12]。民间医学治疗不同的疾病,包括癫痫发作,溃疡,痛风,风湿病,炎症,头晕,震颤,瘫痪,腹泻和高血糖症。文献表明摄入鼠尾草没有不利影响[11]。它也用于治疗肾脏和胆囊结石,心脏病,神经疾病,头痛,胃痛,腹痛和其他健康困难。一些文化使用新鲜的叶子来减轻低血压和呼吸系统问题[13]。此外,它具有抗炎,抗菌,抗肿瘤和抗糖尿病特性。此外,它提高了认知能力和记忆能力,并可能预防或治疗阿尔茨海默氏病[14]。S。officinalis也可以减轻腹泻和更年期症状[15]。officinalis提取物抑制了与代谢相关的单胺神经递质相关酶,表明可能在先前观察到的改善的多巴胺能,血清素能和胆碱能作用的可能性[16]。Alharbi等。[17]报告说,含有officinalis链球菌提取物的发酵骆驼奶可保护大鼠免受糖尿病和氧化应激。
(wt。%)[Guéguen2011] [9] tife 0.90 2.981(9)94.8 2.1 [Challet2005] [10] tife 0.85 Mn 0.05 Mn 0.05 2.985 97 Cu0 tife 0.88 MN 0.88 MN 0.02 2.985(8) 95.0.0±0.5 2.6±0.5 2.3±0.5.3±0.5 c2 tife 0.86 mn 0.88(2)94.9±0.5 1.5 1.5±0.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 C4 tife 0.84 Mn 0.84 Mn 0.0.0.0.02 0.9991(6) 86.5±0.7 11.0±0.5 2.5±0.5 <5
图3:(A-B)基于Si Nanonet的两个可能的晶体管配置的方案:(a)多平行 - 通道FET(MPC-FET)和(b)nanonet-fet(nn-fet)。对于MPC-FET,电流可以直接流过SINW,直接桥接源和排水管,而对于NN-FET,电流必须通过涉及SINWS和SINW/SINW连接的渗透路径流动。对应于源量距离的通道长度(L C)从5 µm到100 µm不等,而通道宽度(W C)固定为200 µm。(c)用10 ml胶体SINW悬浮液详细阐述的典型Si纳米纳特的SEM图像,对应于0.23NWS.μm-2的密度。(d)处理后Si Nanonet磁场效应晶体管的SEM顶视图。200 µm x 200 µm正方形对应于源/排水接触板。
1材料与可持续发展实验室(M2D),大学Bouira,1000,阿尔及利亚,阿尔及利亚2号,贝加亚大学技术学院环境工程实验室,06000 Bejaia,Algeria 3实验室,Algeria 3实验室3材料和催化剂的物理学化学,bejia 000 000,BEJIA,BEJIA,BEJIA,BEJIA,bejia 000,物理化学分析(CRAPC),Bou-ismaïl42004,Tipaza,Algeria 5实验室材料,能源,水和环境的过程。Faculty of Science and Technology, University of Bouira, 10000 Bouira, Algeria 6 University of Rennes, National School of Rennes chemistry, CNRS, ISCR - UMR6226, 35000 Rennes, France 7 Laboratory E2lim (Eau Environnement Limoges), University of Limoges, 123 avenue Albert Thomas, 87060 Limoges, France 8 Center for Energy and Environmental Materials, Ho Chi Minh,越南700000,基本和应用科学研究所,900000,环境与化学工程学院,Duy Tan University,Duy Tan University,Da Nang,550000,越南10自然资源的管理和估值和质量保证。SNVST教师,大学,Bouira 10000,阿尔及利亚SNVST教师,大学,Bouira 10000,阿尔及利亚
1 Greentech,Biop fe le clermont-limagne,63360法国圣布泽尔; aureliewauquier@greencell.tech(A.W.); producty@greencell.tech(R.D.); jeanyvesberthon@greentech.fr(J.-Y.B.)2 Labgem,GénomiqueMébabolique,Genoscope,Genoscope,InstitutFrançoisJacob,CEA,CNRS,CNRS,Universitéd'évryUniversitéd'évry,Universitéparis-Saclay,2 Rue Gastoncrémieux,91057 Evry,France,France; acalteau@genoscope.cns.fr(A.C。); mbeuvin@genoscope.cns.fr(M.B.); vallenet@genoscope.cns.fr(d.v.)3植物和病原体,研究所的土地自然与环境,日内瓦工程,建筑与景观学院(HEPIA),HES-SO SO-SO应用科学与艺术大学西瑞士,瑞士1254,瑞士朱西; julien.crovadore@hesge.ch(J.C。); bastien.cochard@hesge.ch(B.C.); francois.lefort@hesge.ch(F.L。)*信函:pijoly@gmail.com;电话。: +33-(0)4-73-33-44-55
石墨烯量子点(GQD)的荧光性能,即小型单层或多层石墨烯含量[1,2,2,2,3,4,5,6,6,7,7,7,8,9,10,11,12]光伏[3,10],传感[5,9]或光催化[2,5,10]设备。在这些特性的核心上,发射状态的性质受到了多种自上而下和自下而上的可用合成技术的阻碍。可能的候选物可能范围从固有的π -π∗转变(在固定的SP 2系统中)到包括e在内的边缘状态。 g。富含氧气的官能团或碳样锯齿形位点。结果,影响发射波长的主要因素仍在争论。原始的GQD特性已在密度功能理论(DFT)和时间依赖性的TD-DFT水平上探索,并清楚地强调了通过量子结合的量子和降低GQD大小的量子的开放和光学间隙[13,14]。进一步的工作证明了功能化[15、8、14、16、17、18]和/或掺杂[14、19、20、21、22]可以显着影响GQD的电子和光学特性。这些研究阐明了可以在经过实验上观察到的各种光致发光特性,鉴于所选的合成途径和边缘处理,但据报道了原始GQD的一些有趣的特性[23,24,25,26,27,28]。特别是发现最低激发的光学过渡偶极子。这可以在吸收峰和发光峰之间的较大的stokes移动中表现出来,或者,如果存在有效的非辐射衰减通道,则在光致发光的淬灭中。这些特性与所考虑的理想拟光的高几何对称性相关[24,26,28]。在本研究中,我们表明,原始GQD中的低谎言深度激发的存在是植根于基础石墨烯格子和电子孔手性对称性的六边形对称性的一般特性。此外,此属性也保留给与高对称形状显着偏离的结构。这些结论是由从头算在现实的GQD上进行的多体绿色功能计算来确认的。我们认为,手性对称性施加了一定的能量量表,即使空间对称为
摘要在操作中,印刷电路板(PCB)将面临各种和重复的热机械载荷,这可能导致铜的故障,从而导致PCB本身故障。为了模拟和更好地预测PCB的可靠性,必须定义铜的本构行为。在目前的工作中,在循环拉伸压缩载荷下经常测试了在灵活的PCB行业中经常使用的17 µm滚动退火灯泡。铜的弹性极限较低,塑性变形起着在应变过程中起重要作用。在循环载荷下,已经观察到主要的运动硬化。已通过Lemaitre-Chaboche硬化模型确定了所研究铜胶的塑性行为。接下来,已经开发出一种原始的实验设置,从而可以测量循环载荷下薄铜纤维的疲劳行为。进行了各种负载振幅的测试。已经采用了一个共同的曼森模型来重现实验数据。