Sara Gouarderes、Layal Doumard、Patricia Vicendo、Anne-Françoise Mingotaud、Marie-Pierre Rols 等人。电穿孔不会直接影响人类真皮成纤维细胞的增殖和迁移特性,而是通过分泌组间接影响。生物电化学,2020 年,134,第 107531 页。�10.1016/j.bioelechem.2020.107531�。�hal-02560967�
尽管生物信息学、系统生物学和机器学习最近取得了进展,但准确预测药物特性仍然是一个悬而未决的问题。事实上,由于生物环境是一个复杂的系统,传统的基于化学结构知识的方法无法完全解释药物与生物靶标之间相互作用的性质。因此,在本文中,我们提出了一种无监督机器学习方法,该方法使用我们了解的有关药物-靶标相互作用的信息来推断药物特性。为此,我们根据药物-靶标相互作用定义药物相似性,并根据药物-药物相似性关系构建加权药物-药物相似性网络。使用能量模型网络布局,我们生成与特定、主要药物特性相关的药物社区。然而,这些社区中 13.59% 的药物似乎与主要药理特性不匹配。因此,我们将它们视为药物重新利用的提示。测试所有这些重新利用提示所需的资源相当可观。因此,我们引入了一种基于中介性/度节点中心性的优先级机制。通过使用介数/度作为药物再利用潜力的指标,我们确定药物甲丙氨酯可能是一种抗真菌药物。最后,我们使用基于分子对接的稳健测试程序进一步确认甲丙氨酯的再利用能力。
d蛋白石海岸大学,环境化学和生活12(UCEIV)的互动单位(UCEIV),UR4492,SFR CONDORCET FR CNRS 3417,50 RUE FERDINAND BUISSON,62228,62228,13 CALAIS,法国。14 *蛋白石海岸大学的环境化学和相互作用单位(UCEIV)(UCEIV),UR4492,SFR CONDORCET FR CNRS 3417,50 RUE FERDINAND BUISSON,16 622228 RUE FERDINAND BUISSON,CALAIS CALAIS。17
石墨烯及其衍生物表现出有趣的特性(机械性能,电导和热导电性)。将其纳入聚合物矩阵时,在Elec Tronics,Medicine,Transportation等领域中可能进行了许多应用。本综述的目的是突出石墨烯如何影响聚合物纳米复合材料的电性能。第一部分解释了石墨烯的特殊结构,石墨烯是合成石墨烯的主要方法以及对电导率的影响。在第一部分中,还解释了石墨烯血小板的方向和比对如何影响单相聚合物纳米复合材料的渗透阈值或电导率。最后,在第一部分中,我们通过对石墨烯上的化学处理来提高对电性能增强的一些概括。本综述的第二部分的目的是显示将石墨烯掺入不混溶的聚合物对微结构和电气性能的影响。,我们专注于选择性定位纳米颗粒的概念:如何预测石墨烯的定位以及如何通过化学和动力学因素来量身定制定位。根据73个出版物的数据绘制了几个图,以表现出基于石墨烯的聚合物混合纳米复合材料的不同参数对电导率(S.cm -1)的影响。最后,本综述的最后一部分专门用于基于石墨烯的聚合物混合纳米复合材料的电气应用。
现有文献表明,计算机模拟可以揭示微观个体的特征如何引起系统整体的宏观现象。本文旨在将这种重要的基于模拟的观察结果建立在坚实的基础上,作为理论结果。本文不仅探讨整体现象何时可以自然地从微观特征中产生,还探讨了许多宏观实体如何以及为何似乎通过将微观主体有机地聚集到统一导向的运作整体中来响应市场呼声,即使这些主体的利益不一致甚至相互冲突。本文根据系统科学的结果得出结论,并建立了一个充分条件,在此条件下,微观主体的特征可以自然地导致系统整体的宏观特性的出现,即使前者是异质的并且表现为
化学图理论是计算化学1、2的重要分支,将数学的复杂性与分子研究的复杂性质相结合。我们表示分子是原子是节点的图,键是边缘。这种方法允许研究人员使用图理论工具来操纵和仔细检查分子结构,从而对各种化学现象产生深刻的看法。这种方法已经彻底改变了分子特征,反应机理以及功能和结构内的相互作用的检查。化学图理论3,4构成了开发计算工具和算法的基础,这在现代化学中至关重要,推动材料设计的发展,药物发现和关键化学原理的阐明。
第一个石墨烯有限公司。提供一系列石墨烯产品,为各种工业应用提供了重大改进的材料性能。产品的特征是它们的血小板大小,高纵横比和低缺陷水平。可获得五个产品等级,平均血小板尺寸为50 µm,20 µm,10 µm,7 µm和5 µm,具有紧密控制的血小板几何形状。粉末很容易分散在一系列溶剂和聚合物培养基中,并通过世界一流的质量控制测试确保了批量之间的一致性。
抽象的等离子体聚合物是微型或更常见的纳米大小涂层,可以通过不同的方法沉积在多种底物上。这些聚合物的多功能性是通过使用常规聚合反应以外的其他前体以及根据血浆的固有物理和化学特性的潜在变化而增加的。灵活性为各种科学和工程领域提供了富有成果的理由,但它也带来了许多经验观察的挑战。在这篇综述中,将不同的前体,底物和血浆外部参数的变化评估为常见,但不一定是理想或详尽的变量,用于分析血浆聚合物膜的机械性能。常见的趋势与例外相辅相成,并显示了经验观察的各种假设。用于确定血浆聚合物机械性能的技术和方法,对其进行后处理的影响以及某些应用的影响。最后,提供了一个一般的结论,突出了该领域的挑战。
对谐振介电纳米结构的操纵对于下一代光子设备至关重要。传统上,研究人员为此目的使用二维或相变材料。然而,前者导致较小的效率,而后者则缺乏持续变化。在这里,我们通过激光诱导的修改提供了另一种方法。cally,通过激光消融过程,我们合成了钼(MOS 2)纳米颗粒(NPS),然后我们通过激光片段来控制其组合。它导致MOS 2转化为其氧化物MOO 3 - X,进而导致光学响应的明显修饰,这是由于其光学常数之间的较大差异。此外,与原始MOS 2和经典的硅NP相比,激光碎片的NP具有更大的光热反应。因此,我们的基于MOS 2的激光可触摸NP为共振纳米光子剂(尤其是光热疗法)开辟了新的观点。
K。Waszkowska,Y。Cheret,A。Zawadzka,A。Korcala,J。Strzelecki等人。光致发光和基于三链螺旋物的金属金属螺旋体 - 苏普朗分子体系结构的光致发光和非线性光学特性。染料和颜料,2021,186,pp.109036-。10.1016/j.dyepig.2020.109036。hal-03492998