使用从拆除废物中产生的再生骨料来生产混凝土是减少建筑环境对环境影响的一种有希望的选择。然而,预测再生骨料混凝土的硬化性能是其在建筑领域大规模部署的主要障碍之一。由于传统的经验方法对于预测新的再生骨料配方的性能不太可靠,近年来,人工智能方法已得到广泛发展,以实现这一目标。在本文中,我们对预测再生骨料混凝土的机械性能和进行敏感性分析的人工智能 (AI) 方法进行了广泛的文献综述。本研究对文献中发现的主要方法和算法的适用性、准确性和计算要求进行了详尽的描述、检查和讨论。此外,还强调了各种算法的优点和缺点。人工智能算法已在各种预测应用中取得了成功,并且准确率很高。虽然这些算法是用于估计再生骨料混凝土混合物成分和机械性能的强大预测工具,但它们的性能高度依赖于数据结构和超参数选择。这项研究可以帮助工程师和研究人员更好地决策使用人工智能算法进行机械性能预测和/或优化再生骨料混凝土的配方。
摘要:这项研究利用了ceōriaxone和蛋氨酸的合成混合配体式金属(II)络合物的稳定物。使用MELɵNG点,诱导,溶解度,紫外线和FT-IR光谱表征了复合物。还评估了配体和合成复合物的含量。在复合物中的金属到配体的raɵo为1:1:1。络合物是鲜绿色,浅黄色和粉红色的颜色,其百分比(45-91)%。复合物是固体,具有高熔点点(93-289)oC。所有复合物都是空气稳定的,通常在二甲基亚氧化二甲基磺胺(DMSO)中溶于N-己烷中,这表明复合物是极性的。由所有复合物的诱导测量结果产生的给出了低值(6.8-7.3)SCM 2 mol -1),这表明复合物的电解质性质差。 从红外研究的结果中观察到,配体通过配体的氧气和氮原子与金属配位,并且紫外可见的光谱表明所有形成的络合物都有八面体的几何形状。 对复合物的筛查表明,某些复合物对针对10-30μg/ml内测试的微生物的细菌表现出相当大的细菌。给出了低值(6.8-7.3)SCM 2 mol -1),这表明复合物的电解质性质差。从红外研究的结果中观察到,配体通过配体的氧气和氮原子与金属配位,并且紫外可见的光谱表明所有形成的络合物都有八面体的几何形状。对复合物的筛查表明,某些复合物对针对10-30μg/ml内测试的微生物的细菌表现出相当大的细菌。
总结这项工作的目的是检查新鲜,巴勒莫(意大利西西里岛)由Paracent-Rotus lividus购买的耐用性和微生物所有者。21玻璃,其中每张玻璃杯中包含的大约50 g新鲜的Rogen玻璃,以评估冷却存储期间的耐用性。对样品进行了对颤音,气管,李斯特菌,沙门氏菌和梭状芽胞杆菌的细菌进行分析。感官接受记录长达72小时,之后观察到气味和强度损失。感觉专家主要与硫化氢的生长有关。在71.4%的样品中,能够通过基因型和表型颤音质属属。已确定。有几种弧菌物种,例如:静脉内分析(47%); V. Harveyi(16%); V. Mimicus和V. Mediterranei(10%); V. Hepatarius(7%); V. rotiferanus和V. diabolicus(5%)和V. ponticus(2%)。尽管孤立的弧菌部落很少是人类疾病的原因,但经常消费原始的Seeigel-Roges可能是关于中型安全的一些问题。李斯特菌属。和沙门氏菌属。未得到证明。
文章历史记录:本研究探讨了用氧化铝纳米颗粒加强AL-6061铝合金的摩擦搅拌加工(FSP),分析了处理参数的影响,包括横向速度,旋转速度和通过的速度 - 通行数 - 最终的张力强度,产量强度,产量强度,固有强度,固有强度,固有强度,固有速度和压缩率。使用CNC铣床,以900、1100、1300和1500 rpm的旋转速度进行FSP,遍历速度为10、15和20 mm/min。使用了先进的机器学习模型,即SRS优化的长期短期记忆(LSTME),用于预测处理后材料的性能,达到0.911的高R²值的最终强度为0.951,屈服强度为0.951,固有频率为0.953,固有频率为0.985,为0.985进行阻尼比。关键发现表明,FSP改善了阻尼特性和机械性能,在所有通过中,在900 rpm处观察到最大阻尼有效性。氧化铝纳米颗粒增强了阻尼功能,而增加的旋转速度则促进了晶粒的细化,从而产生了更强,更具变形的抗耐性材料。LSTME模型的表现优于其他机器学习方法,在训练中达到0.965至0.993的R²值,测试中达到0.911至0.987。这些结果证明了将FSP与机器学习相结合以优化高性能应用的材料属性的功效。
1 Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, I-50019 Sesto F.no (Florence), Italy 2 Inf-Astro fi sic observatory of Arcetri, Largo E. Fermi 5, I-50125 Florence, Italy 3 School of Physics and Astronomy, University of St Andrews, North Haugh, ST Andrews, St Andrews. Ky16 9SS, UK 4 Inf-Observatory of Astro Phone and Spazio of the Space of Bologna, Via Piero Gobetti 93 /3, 40129 Bologna, Italy 5 GEPI, Observiire de Paris, PSL University, CNRS, Meudon, France 6 Cavendish Laboratory, University of Cambridge, 19 J. Thomson Ave., Cambridge CB3 0he, UK 7, UK 7卡夫利宇宙学研究所,剑桥大学,马德利路,剑桥CB3 0HA,英国8物理与天文学系,伦敦大学学院,伦敦高尔街,伦敦WC1E 6BT,英国9欧洲南部天obervoration,Karl-Schwarzsschild-Strassse 2, D-85748 Garching Bei Muenchen,德国1 Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, I-50019 Sesto F.no (Florence), Italy 2 Inf-Astro fi sic observatory of Arcetri, Largo E. Fermi 5, I-50125 Florence, Italy 3 School of Physics and Astronomy, University of St Andrews, North Haugh, ST Andrews, St Andrews. Ky16 9SS, UK 4 Inf-Observatory of Astro Phone and Spazio of the Space of Bologna, Via Piero Gobetti 93 /3, 40129 Bologna, Italy 5 GEPI, Observiire de Paris, PSL University, CNRS, Meudon, France 6 Cavendish Laboratory, University of Cambridge, 19 J. Thomson Ave., Cambridge CB3 0he, UK 7, UK 7卡夫利宇宙学研究所,剑桥大学,马德利路,剑桥CB3 0HA,英国8物理与天文学系,伦敦大学学院,伦敦高尔街,伦敦WC1E 6BT,英国9欧洲南部天obervoration,Karl-Schwarzsschild-Strassse 2, D-85748 Garching Bei Muenchen,德国
沉积技术 基片厚度密度参考温度 (nm) (g/cm 3 ) (◦ C) 脉冲激光沉积 石英玻璃 120-140 4.88- 5.4 取决于房间 Kim 等人 [1] (PLD) 激光功率、O 2 分压、目标-基片距离 80mJ、10Pa、35mm 时为 4.88(低 VO ) 80mJ、5Pa、35mm 时为 5.39(高 VO ) 等离子增强原子 Si 和蓝宝石 37.8 5.154 80 Yang 等人 [2] 层沉积(PEALD) 2500 W 5.325 250 PEALD Si (100) 10 4.83 100 Li 等人[3] 100 W ≥ 5.5 ≥ 150 电子束蒸发 GaAs 和 Si 95.5 5.152 200-350 Passlack 等人 [4] 4.5-4.8 40 分子束外延 GaAs (001) 85.5 5.30 具有一定结晶性 420-450 Yu 等人 [5] (MBE) 射频磁控溅射 SiO 2 /Si 25 5.32 有 O 2 室溅射 Han 等人 [6] 4.84 无 O 2 (更快的蚀刻速率) 射频磁控溅射 Si 498.9 4.78 室 Liu 等人 [7]
橄榄垃圾,也称为橄榄色的Pomace,是橄榄油提取剩下的残留物。它由橄榄皮,果肉,种子和剩余的油组成。这种副产品传统上被认为是一种废物,经常被丢弃或燃烧。但是,最近的研究表明,橄榄浪费可能是有价值的资源,具有巨大的土壤改善潜力。当将橄榄废物纳入土壤中时,它可以通过增加其有机物含量并促进更好的土壤聚集来帮助改善土壤结构。这反过来可以改善水浸润和保留,并减少土壤侵蚀。此外,橄榄废物还含有氮,磷和钾,可以帮助改善土壤生育能力并为植物生长提供必需的养分。此外,橄榄废物也会对土壤微生物活性产生积极影响。橄榄废物中的有机物为土壤微生物提供了食物来源,在养分循环和土壤健康中起着至关重要的作用。这些微生物有助于分解有机物,释放营养和抑制植物病原体,最终有助于更健康,更有生产力的土壤生态系统。总而言之,橄榄废物是一种有价值的副产品,可以对土壤特性产生重大影响。通过将橄榄废物纳入土壤中,农民可以改善土壤结构,生育能力和微生物活性,从而导致更健康的植物并增加农作物的产量。此外,在土壤管理实践中使用橄榄浪费也可以帮助减少废物并促进农业的可持续性。关键字:橄榄浪费,土壤结构,土壤生育能力,土壤微生物。
图 1. 带有原子标记方案的 CuL T . DMSO 复合物的 X 射线晶体结构 ORTEP 图。位移椭球以 50% 概率水平绘制。H 原子显示为任意半径的圆。铜配合物的循环伏安法揭示了对应于 Cu I /Cu II 氧化还原过程的准可逆氧化还原对。采用 DFT 和 TD-DFT 理论在 M062X/6-311**G/ SDD 水平进行的量子计算与实验数据高度一致。结果表明,铜化合物具有比尿素更大的静态和动态超极化率值。例如,H 2 LT 的 β 0 值大约是尿素的 68 倍。结果预测所研究的化合物能够成为优异的二阶和三阶 NLO 材料。所制备的配合物以H 2 O 2 为氧化剂,能有效催化环己烯的均相氧化反应,以CuL Bz 为催化剂,转化率可达98% 。以所研究的配合物为捕集剂,在酚红氧化溴化反应中探究了溴过氧化物酶活性,该配合物可作为溴过氧化物酶的潜在功能模型,CuL Bz 催化剂表现出较好的催化活性,反应速率常数k 为2.203 × 10 5 (mol L -1 ) -2 s -1 。[1] A. Okuniewski,D. Rosiak,J. Chojnacki,B. Becker,具有Hg(Cl, Br, I)O = Chalogen 键和不寻常的Hg2S2(Br/I)4 核的新型配合物。 τ'4 结构参数的实用性,Polyhedron 90 (2015) 47 – 57,https://doi.org/10.1016/j.poly.2018.02.016。[2] Z. Tohidiyan、I. Sheikhshoaie、M. Khaleghi、JT Mague,一种含四齿席夫碱的新型铜 (II) 配合物:合成、光谱、晶体结构、DFT 研究、生物活性及其纳米金属氧化物的制备,J. Mol. Struct. 1134 (2017) 706 – 714,https://doi.org/10.1016/j.molstruc.2017.01.026。 [3] TH Sanatkar、A. Khorshidi、E. Sohouli、J. Janczak,四齿 N2O2 席夫碱配体的两种 Cu(II) 和 Ni(II) 配合物的合成、晶体结构和表征及其在肼电化学传感器制造中的应用,Inorg. Chim. Acta 506 (2020),119537,https://doi.org/10.1016/j.ica.2020.119537。作者非常感谢阿尔及利亚高等教育和科学研究部的财政支持。他们感谢意大利那不勒斯费德雷科 II 大学化学科学系的 Francesco RUFFO 教授和 Angella TUZI 教授的帮助。此外,作者非常感谢法国里昂大学、克劳德伯纳德里昂第一大学、CNRS UMR 5280、分析科学研究所(69622 Villeurbanne Cedex)提供的计算设施。
摘要 在当今生态意识强烈的时代,消费者选择的食物反映了道德和环境问题,这增加了对有机产品的需求。生物防治是有机农业中可行的植物保护方法。冷冻干燥是一种长期保存微生物的技术,可确保其遗传稳定性和生存能力。为了减少冷冻干燥对细胞的损害,使用海藻糖和味精等冷冻保护剂。本研究评估了在冷冻干燥过程中添加这些物质对所选酵母分离物的生存能力、它们在番茄叶片上存活的能力以及保持对抗灰葡萄孢菌的拮抗特性的影响。在温室条件下,在冷冻干燥过程之前和之后,对酵母分离物 114/73(Wickerhamomyces anomalus EC Hansen)和 117/10(Naga nishia albidosimilis Vishniac & Kurtzman)在番茄植株上进行了测试,以了解其在叶片上定植的能力以及作为 B. cinerea 的预防和干预治疗。在体外评估了冷冻干燥后的酵母活力。海藻糖和谷氨酸钠均在冷冻干燥过程中提高了酵母活力。活力不是很高(117/10 从 30.33% 到 36.17%,114/73 从 10.67% 到 16.5%)。冷冻干燥后脱水的酵母用海藻糖和谷氨酸钠保护,在番茄叶片上显示的菌落数与冷冻干燥前相同。保护性治疗的效果取决于酵母分离物、冻干过程中使用的保护性物质、治疗时机(预防与干预)以及这些因素之间的相互作用。冷冻保存的分离物 117/10 的效果优于添加海藻糖或谷氨酸钠的 114/73,将疾病严重程度指数从 88.3%(对照)降低至 18.75 - 55.33%。预防性治疗比干预更有效。酵母分离物在冻干后对灰葡萄孢菌的叶片定殖能力和生物防治效果为可持续农业提供了有希望的解决方案。然而,可能需要进一步研究,以分析各种因素之间的相互作用并优化策略。
摘要 本研究主要研究了通过添加石墨和二硼化铪 (HfB 2 ) 颗粒来显著提高 AA6061 合金混合复合材料的磨损性能。AA6061 合金因其高腐蚀性和耐磨性而广泛应用于航空和汽车领域。采用搅拌铸造法,通过在 AA6061 基体中添加不同百分比的石墨和 HfB 2 颗粒来创建混合复合材料。使用 SEM 和显微硬度计检查所得复合材料的微观结构,以验证增强颗粒的均匀分布和合金的硬度。为了比较混合复合材料与基体 AA6061 合金的摩擦学性能,在不同的负载条件下进行了磨损实验。结果表明,加入 5% 的石墨颗粒和 15% 的 HfB 2 颗粒后,耐磨性显着提高。坚硬的 HfB 2 颗粒提高了承载能力和耐磨性。石墨和 HfB 2 的协同作用产生了一种混合复合材料,与基础 AA6061 合金相比,其磨损率和摩擦系数明显较低。这项研究的成果凸显了混合增强策略在开发具有增强摩擦学性能的先进材料方面的潜力,使其有望成为汽车悬架部件和车顶导轨的替代品。