此预印本的版权持有人(该版本发布于2024年5月13日。; https://doi.org/10.1101/2023.11.02.565382 doi:biorxiv Preprint
酰基辅酶-A结合蛋白(ACBP),也称为地西epam结合抑制剂(DBI),是食欲和脂肪生成的有效刺激剂。生物信息学分析与系统筛选结合表明,过氧化物酶体增殖物激活的受体伽马(PPARγ)是转录因子,最能解释了包括肝脏和脂肪组织在内的代谢活性器官中的ACBP/DBI上调。PPARγ激动剂罗格列酮诱导的ACBP / DBI上调以及体重增加,这可以通过小鼠中的ACBP / DBI敲除。此外,PPARG的肝脏特异性敲低阻止了高脂饮食(HFD)诱导的循环ACBP/DBI水平上调,体重增加降低。相反,ACBP / DBI的敲除阻止了HFD诱导的PPARγ上调。Notably, a single amino acid substitution (F77I) in the γ 2 subunit of gamma-aminobutyric acid A receptor (GABA A R), which abolishes ACBP/DBI binding to this receptor, prevented the HFD-induced weight gain, as well as the HFD- induced upregulation of ACBP/DBI, GABA A R γ 2, and PPAR γ .基于这些结果,我们假设依靠ACBP/DBI,GABA A R和PPARγ的肥胖前馈环的存在。在任何水平上的中断,都无法区分地减轻HFD诱导的体重增加,肝脏toposisos和高血糖。
抽象的内膜膜是一种毁灭性的感染,可能引起失明。超过一半的芽孢杆菌内膜病例导致有用视力的显着丧失。芽孢杆菌产生许多毒力因子,可能导致视网膜损伤和稳健的炎症。我们在这种疾病的背景下分析了免疫抑制剂A(INHA)金属抑制,假设INHA有助于眼内毒力和炎症。我们分析了野生型(WT),INHA1-抑制剂(D INHA1),INHA2-偏高(D INHA2)或INHA1,A2,A2和A3偏见的表型和感染率(D Inha2)和A3 deenigent(d inha1-3)芽孢杆菌芽孢杆菌。比较了对生长,蛋白水解和细胞毒性的体外分析。WT和INHA突变体类似地对视网膜细胞具有细胞毒性。d inha1和d inha2突变体比苏云金氏菌早于木相相生长。D Inha1-3突变体的蛋白水解降低,但这种菌株在体外的生长与WT相似。 通过静脉内感染了C57BL/6J小鼠,具有200 cfu的WT B.苏云金或INHA突变体,从而启动了实验性内膜。 分析眼睛的眼内芽孢杆菌和髓过氧化物酶浓度,恢复功能丧失和组织学变化。 在整个感染过程中,感染了DINHA1或D INHA2突变菌株的眼睛含有比感染WT的眼睛的细菌数量更多的眼睛。 被单个突变体感染的眼睛具有炎症和视网膜功能损失,类似于感染WT菌株的眼睛。 感染了D inha1-3突变体的眼睛清除了感染。蛋白水解降低,但这种菌株在体外的生长与WT相似。通过静脉内感染了C57BL/6J小鼠,具有200 cfu的WT B.苏云金或INHA突变体,从而启动了实验性内膜。分析眼睛的眼内芽孢杆菌和髓过氧化物酶浓度,恢复功能丧失和组织学变化。在整个感染过程中,感染了DINHA1或D INHA2突变菌株的眼睛含有比感染WT的眼睛的细菌数量更多的眼睛。被单个突变体感染的眼睛具有炎症和视网膜功能损失,类似于感染WT菌株的眼睛。感染了D inha1-3突变体的眼睛清除了感染。定量实时PCR(QRT-PCR)结果表明,单个INHA突变体中其他INHA可能存在补偿性表达。这些结果表明,INHA金属蛋白酶有助于感染的严重程度和芽孢杆菌内po虫的炎症。
tardrade是微小无脊椎动物,能够承受极端的环境条件,包括高辐射水平。tardigrade蛋白DSUP(损伤抑制器)在严重的环境压力和X射线上保护Tardigrade的DNA。在癌细胞中表达时,DSUP可保护DNA免受辐射诱导的单链和双链断裂(DSB)的侵害,增加辐照细胞的存活,并保护DNA免受活性氧。DSUP的这些异常特性表明,了解蛋白质功能如何有助于设计可以在放疗或太空旅行期间保护人类的小分子的设计。在这里,我们研究了DSUP是否在大鼠胚胎培养的皮质神经元中具有保护性。我们发现,在皮质神经元中,密码子优化的DSUP定位于细胞核,令人惊讶地促进了神经毒性,导致神经变性。出乎意料的是,我们发现DSUP表达会导致培养的神经元中DNA DSB的形成。使用电子显微镜,我们发现DSUP促进了染色质凝结。与DSUP在癌细胞中的保护特性不同,神经元中DSUP促进神经毒性,诱导DNA损伤,并重新排列染色质。总的来说,神经元对DSUP敏感,DSUP是神经元细胞中DNA保护的替代替代物。
抽象序列特异性的DNA结合蛋白(DBP)在生物学和生物技术中起关键作用,并且对具有基因组编辑和其他应用的新特异性的DBP的工程引起了极大的兴趣。尽管使用选择方法对自然发生的DBP进行重新编程,但识别任意目标位点的新DBP的计算设计仍然是一个杰出的挑战。我们描述了一种用于设计小型DBP的计算方法,该方法通过与主要凹槽中的碱基相互作用识别特定目标序列,并将这种方法与实验筛选结合使用,以生成5个不同DNA靶标的粘合剂。这些粘合剂表现出特异性,与目标DNA序列的计算模型紧密匹配,在多达6个基础位置和低至30 - 100 nm的亲和力下。设计的DBP-TARGET站点复合物的晶体结构与设计模型密切一致,突出了设计方法的准确性。设计的DBP在大肠杆菌和哺乳动物细胞中的功能都抑制和激活相邻基因的转录。我们的方法是迈向通往小型途径的重要步骤,因此很容易用于基因调节和编辑的可交付序列特异性DBP。
任何人都可以自由访问可作为“开放访问”的作品的全文。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。使用所有其他作品的使用要求正确持有人(作者或出版商)同意,如果不符合适用法律的版权保护。
蛋白质是通过各种功能,从结构支持到催化生化反应的不同功能来维持生命的重要生物分子。它们的催化效率使它们对于工业应用来说是无价的,在这些应用中,它们通常需要优化才能在特定条件下运行。虽然实验和计算方法在蛋白质工程方面取得了进展,但由于蛋白质结构和功能的复杂性,不存在通用方法。机器学习的最新进展通过利用大量蛋白质序列数据提供了新的可能性。然而,仍然存在关键挑战,包括描述酶活性和热稳定性等基本特性的高质量标签的有限可用性和不均匀分布。解决这些问题对于开发能够精确特征选择的模型至关重要。我的工作重点介绍了蛋白质工程的两个关键步骤:多样化和选择。为了改善选择,使用转移学习,数据增强和蛋白质语言模型(PLM)开发了深度学习模型,以预测物理和功能特性,例如熔化温度,酶温,蛋白质丰度和体外活性。这些模型不仅可以实现精确的性状选择,而且还提供了有关序列,热适应性和构象稳定性之间关系的见解。为了多样化,创建了一个深层生成模型,以捕获自然序列多样性并扩展其以生成跨蛋白质家族的新型变体库。这种方法优先考虑功能序列,并允许具有增强特性的蛋白质的靶向工程。超越了一般序列的生成,开发了一个框架来创建针对特定性状优化的变体池,例如增加的热稳定性。通过整合这些进步,我们从各种野生型序列中设计了功能性蛋白质变体,达到熔化温度的36°C升高。这项工作突出了生成机器学习的潜力,以完善和加速蛋白质工程周期,为更高效,更可扩展的生物技术应用铺平了道路。
方法:此校准方法已被设计为易于重现和优化,从而减少了所需的时间和成本。它是基于原始设置,其中包括使用浓度分离器来测量从时间强度曲线(AUC)下从面积(AUC)获得的谐波信号强度的变化作为各种对比剂浓度的函数。分离器提供了4种不同的浓度,同时从Sonovue™对比剂的初始浓度的12.5至100%不等(Bracco Imaging S.P.A.,米兰,意大利),在单个注射中测量4个AUC。AUC的图作为四个对比剂浓度的函数表示谐波信号的强度变化:斜率是校准参数。通过这种方法的标准化暗示,两代超声扫描仪都必须具有相同的斜率为校准。此方法已在同一制造商(Aplio500™,Aplioi900™,佳能医疗系统,日本东京)的两个超声扫描仪上进行了测试。APLIO500™使用了最初的多中心DCE-US研究定义的设置。已经调整了Aplioi900™的机械索引(MI)和颜色增益(CG),以匹配Aplio500™的颜色。根据测量可重复性评估了新设置的可靠性,一旦对两个超声扫描仪进行校准,获得的测量值之间的一致性可重复性。
特异性和评论同型蛋白质Nanog是通过抑制细胞分化因子维持胚胎干细胞(ESC)多能性至关重要的转录因子。在人类中,纳米基因编码这种蛋白质。Nanog与其他因素(例如Oct-4和Sox2)一起运行,以定义ESC身份。它在癌症干细胞中也高度表达,这表明作为癌基因在促进癌症发展中的潜在作用。纳米水平升高与癌症患者的预后不良有关。nanog在原位(CIS),胚胎癌和seminomas中表现出强烈而特异性的表达,但在Teratomas和蛋黄囊肿瘤中不存在。研究表明,包括Oct4,Nanog,Stellar和GDF3在内的人类胚胎干细胞相关的基因在Seminomas和乳腺癌中表达。nanog的阳性与高级卵巢浆液性癌显着相关,但在良性,边缘或低度浆液病变中未观察到。一项研究强调了纳米的细胞穿梭及其在宫颈癌进展过程中增加的基质存在。此外,Nanog的过表达与肿瘤分化,淋巴结转移和肿瘤大小等因素有关,研究表明其对肺癌中降低总生存率(OS)和无疾病生存(DFS)的预测价值。
此ELISA套件使用三明治 - elisa作为方法。该试剂盒中提供的微elisa带状板已与DNA结合蛋白抑制剂ID-2的抗体预先涂覆。标准或样品被添加到适当的微ELISA带状板孔中,并将其组合到特定抗体中。然后将辣根过氧化物酶(HRP)偶联的抗体特异性抗DNA结合蛋白抑制剂ID-2添加到每个微elisa条板中,并孵化。自由组件被冲走。将TMB基材解决方案添加到每个孔中。只有那些包含DNA结合蛋白抑制剂ID-2和HRP共轭DNA结合蛋白抑制剂ID-2抗体的井将呈蓝色,然后在添加停止溶液后变成黄色。光密度(OD)以450 nm的波长进行分光光度法测量。OD值与DNA结合蛋白抑制剂ID-2的浓度成正比。您可以通过将样品的OD与标准曲线进行比较,计算样品中DNA结合蛋白抑制剂ID-2的浓度。