全球心血管疾病(CVD)患病率持续上升,已成为全球人口死亡的主要原因。动脉粥样硬化(AS)是心血管疾病的主要诱因,它在早期悄无声息地开始,最终导致不良心血管事件,严重影响患者的生活质量或导致死亡。血脂异常,尤其是低密度脂蛋白胆固醇(LDL-C)水平升高,是 AS 发病机制中的独立危险因素。研究表明,动脉壁内异常的 LDL-C 积聚是动脉粥样硬化斑块形成的重要诱因。随着病情进展,斑块积聚可能破裂或脱落,导致血栓形成和完全的血液供应阻塞,最终导致心肌梗死、脑梗死和其他常见的不良心血管事件。尽管针对降低 LDL-C 的药物治疗已足够,但心脏代谢异常患者仍然面临较高的疾病复发风险,这凸显了解决 LDL-C 以外的脂质风险因素的重要性。最近的注意力集中在甘油三酯、富含甘油三酯的脂蛋白 (TRL) 及其残留物与 AS 风险之间的因果关系上。遗传学、流行病学和临床研究表明 TRL 及其残留物与 AS 风险增加之间存在因果关系,这种血脂异常可能是不良心血管事件的独立风险因素。特别是在患有肥胖、代谢综合征、糖尿病和慢性肾脏疾病的患者中,紊乱的 TRL 及其残留物水平会显著增加动脉粥样硬化和心血管疾病发展的风险。血浆中过量合成的TRLs的积累、参与TRLs脂肪分解的酶的功能受损以及肝脏对富含胆固醇的TRLs残留物的清除受损,可导致TRLs及其残留物在动脉中沉积,促进泡沫细胞形成和动脉壁炎症。因此,了解TRLs诱导的AS的发病机制并对其进行治疗可以减缓或阻止AS进展,从而降低心血管疾病的发病率和死亡率,特别是冠状动脉粥样硬化性心脏病。
海军部雇员的职业安全与健康保护 1970 年职业安全与健康法、第 12196 号行政命令和 29 CFR 1960 要求联邦机构负责人向雇员提供没有职业安全和健康危害的场所和工作条件。 海军部的职责 1. 一般要求 海军部长将确保为海军部雇员提供没有职业安全和健康危害的场所和工作条件。 2. OSHA 规定 海军部将遵守职业安全与健康管理局的适用规定。 3. 报告危害 海军部将通过指挥系统对员工关于工作场所危害的报告作出回应。 4. 工作场所检查 海军部下属的每个司令部都将确保每年检查每个工作场所是否存在危害情况。当地指挥部将张贴检查中发现的不安全或不健康工作条件通知,至少持续三个工作日,或直到危险得到纠正(以较晚时间为准)。5. 纠正不安全条件海军部内的指挥部将迅速采取行动,确保消除危险情况。即将发生的危险情况将立即得到纠正。6. 安全和防护设备海军部内的指挥部将购买、维护和要求使用适当的防护和安全设备。7. 安全和健康培训海军部内的指挥部将为员工提供职业安全和健康培训。
Hang Thi Thuy Gander-Bui, 1 , 2 Jo € elle Schl € afli, 1 Johanna Baumgartner, 1 , 2 Sabrina Walthert, 1 Vera Genitsch, 3 Geert van Geest, 4 Jose´ A. Galva´ n, 3 Carmen Cardozo, 3 Cristina Graham Martinez, 3 Mona Grans, 5 Sabine Muth, 5 Re´ my Bruggmann,4 Hans Christian Probst,5 Cem Gabay,6和Stefan Freigang 1,7, * 1, * 1伯恩伯恩伯恩伯恩大学组织医学与病理学研究所实验病理学,瑞士大学2研究生院2伯尔尼大学伯尔尼,伯尔尼,瑞士3012伯尔尼,3012瑞士4 Interfulty BioInformatics和瑞士生物信息学研究所,伯恩大学,3012,瑞士伯恩,瑞士5. 55131 MAINZ大学医学中心,德国55131 Mainz 6 6 6瑞士大学医院,瑞士大学医院,瑞士大学医院7号风湿病学司。 stefan.freigang@unibe.ch https://doi.org/10.1016/j.immuni.2023.06.023
海洋保护区(MPA)正在全球部署,以保护地球的生物多样性在快速变化的海洋中。自适应MPA管理和监测中的气候变化考虑因素正在成为一种更普遍的方法,尽管MPA规划中越来越多地解决气候变化,但仍然存在实施差距。本研究将气候鲁棒性指数(CRI)应用于MPA监测计划,以评估场地和区域层面计划中如何概述气候变化。以前开发了用于评估MPA管理计划的,CRI分数计划基于其气候变化适应原理的纳入程度,包括适应性管理的核心要素。我们通过将美国MPA的指数分数与选定的MPA特征相关联,并通过检查特定的物理,生态和社会气候变化的影响,并在监测计划的监测范围内考虑,并研究了特定的物理,生态和社会气候变化的影响,从而为监测计划提供了补充。我们在MPA监视计划中发现可起作的目标和阈值的差距很大,这与先前评估MPA管理计划的研究一致,这表明在许多情况下,自适应管理周期是不完整的。我们将完成自适应管理周期的重要性视为一种核心气候适应策略,并探索社会生态目标和地方伙伴关系的作用,这是在不断变化的世界中继续改善MPA结果的途径。
最近,出现了一种新的蛋白质蛋白质相互作用研究的方法。可以使用田野和同事开发的“两杂交系统”(1,2)来寻找新的相互作用蛋白质,或者验证和表征可能会根据遗传或生物化学数据关联的蛋白质之间的相互作用。两种杂交系统是一种分子遗传方法,它利用酵母转录因子GAL4的结构柔韧性。GAL4蛋白包含两个结构域,即DNA结合域和转录激活剂结构域。这两个结构域不必成为同一蛋白的一部分来完成转录激活(3)。当两个结构域分别融合到两个无关但相互作用的蛋白质时,由于蛋白质 - 蛋白质相互作用,可以实现转录激活。通常,使用两种杂交系统对新的相互作用蛋白进行搜索是通过将含有UASC的集成拷贝的酵母菌菌株共转换。1J-LACZ报告基因和两个质粒(2,4-6)。一个质粒编码GAL4的DNA结合结构域与感兴趣的蛋白质的融合,而另一个质粒(库质粒)编码GAL4转录激活结构域的融合以随机生成的编码区域。因此,DNA结合结构域融合将与报告基因上游的UASGAL元件结合。如果由文库融合质粒编码的蛋白质与感兴趣的蛋白质相互作用,则转录激活结构域成为报告基因上游的共定位,从而导致转录激活。有效使用两个杂交系统需要产生大量的酵母转化体。由于酵母的转化仍然比细菌的效率低四个数量级,因此对于详尽的cDNA文库筛网来说,转化可能是限制步骤。在本文中,我们设计了一种简单的方法,可以消除对转化的需求,并允许用户搜索
在大鼠大脑皮层中研究了腺苷酸环化酶和鸟嘌呤核苷酸结合蛋白(G蛋白)在锂对脑功能的慢性作用中的可能作用。发现,用锂(具有治疗相关的血清水平为1 mm)对大鼠的慢性治疗增加了mRNA和蛋白质的水平,用于钙调蛋白敏感(1型)和钙调蛋白敏感(2型)形式的腺苷酸环化酶和抑制蛋白质的mRNA和蛋白质水平降低,用于抑制性gja2 gja2 gja2 gja2 gja2 gja2。慢性锂不会改变其他G-蛋白亚基的水平,包括GA,GSA和GJF。在短期锂治疗(最终血清水平为-1 mM)或以较低剂量的锂(血清水平为-0.5 mm)下,h含腺苷酸环化酶和GIA的锂调节均未观察到短期锂治疗(最终血清水平为-1 mm)。结果表明,腺苷酸环化酶的上调和GJA的下调可能代表了分子机制的一部分,锂可以改变脑功能并在治疗情感障碍的治疗中发挥其临床作用。
有症状感染被定义为任何检测呈阳性并在请求检测时报告与 COVID-19 一致的症状(高烧、新的持续咳嗽或嗅觉或味觉丧失或改变)的个体。住院数据是从急救护理数据集中提取的,包括所有在检测呈阳性后 21 天内通过急救护理入院的个体,但被编码为受伤的个体除外。还对那些有 COVID 或呼吸道代码的人进行了敏感性分析。为了考虑到住院数据和 21 天随访的滞后,仅包括 2021 年 7 月 30 日之前接受检测的人。死亡数据取自患者人口统计服务。包括检测呈阳性后 28 天内的死亡。为了考虑到死亡数据和 28 天随访的滞后,仅包括 2021 年 7 月 12 日之前接受检测的人。对于所有结果,对照组都是有症状的个体,检测结果为阴性,与对照组的结果无关。
长期以来,人们已经认识到,与生物多样性保护的保护区对于生物多样性保护至关重要,与在未保护地区观察到的生物多样性相比,储量中的动植物种群群中的种群越来越多。例如,据信保护区阻止了世界大约四分之一的鸟类的灭绝(1)。也有受保护区的“溢出”效应,与储量相比,储量毗邻的位置支持储量更大的种群和物种丰富度,而储备金则更大(2)。因此,储备金对生物多样性具有显着的利益,远远超出了其边界。与储量一样重要,很明显,当前的储备网络不足以保存所有生物多样性,并且迫切需要保护保护区的全球扩张显着(3)。2021年,国际自然保护联盟(IUCN)世界保护大会恳请世界各地的政府设定雄心勃勃的目标,以保护到2030年至少30%的地球。受保护网络的扩展
总结泛素蛋白水解系统在一系列基本的细胞过程中起重要作用。是细胞周期的调节,免疫反应和炎症反应的调节,信号转导途径的控制,发育和分化。这些复杂过程通过单个或子集的蛋白质的特异性降解来控制。deg含量涉及两个连续的步骤,共轭泛素的多种部分以及26S蛋白酶体对标记蛋白的降解。一个重要的问题涉及基于系统特异性的机制的身份。底物识别受一个大型家族泛素连接酶的控制,该连接酶可以认识底物,结合它们并催化/促进它们与泛素的相互作用。生物评估22:442±451,2000。β2000 John Wiley&Sons,Inc。
抽象蛋白水解是维持所有活细胞中蛋白质稳态的重要组成部分。lon是细菌中高度保守的AAA+蛋白酶,可对细胞的需求进行蛋白质质量控制以及调节作用。尽管有越来越多的证据证明了其在细菌生存和适应中的重要性,但我们对其中几种途径如何受到LON的调节以及LON介导的蛋白水解本身如何控制的几个途径存在重大差距。这些问题即使在诸如铜绿假单胞菌和花椰菜菌的良好模型生物中仍然存在。在铜绿假单胞菌中,已知LON会影响许多途径,但很少有人知道底物。此外,一种名为ASRA的隆隆蛋白在很大程度上没有表征,没有已知的底物。在C. crescentus中,尽管已经发现了几种底物,但尚无LON特异性调节剂。本文旨在填补其中一些差距,是三项研究的集合。在研究I中,我们使用定量蛋白质组学在铜绿假单胞菌中搜索LON底物,从而列出了假定的底物。我们通过体外测定确认了九种以前未知的底物,其中大多数是与运动相关的蛋白质。通过研究LON功能丧失突变体及其表型,我们观察到细胞分裂和运动性的缺陷,以及底物蛋白SULA的积累,SOS反应的控制下的细胞分裂抑制剂。我们对其底物进行了全球搜索,从而列出了推定的底物。通过抑制剂突变分析,我们发现LON在最佳条件下通过SULA间接调节运动性,直接通过降解鞭毛蛋白,大概是在抑制运动条件下。在研究II中,我们通过在硅和体外研究中以生化为特征,得出的结论是,它是一种活跃的蛋白酶,其功能与LON不同。通过此,我们发现Asra通过其底物QSLA(LASR的抗激活剂)调节法定人数的PQS途径。这种降解在体外抑制了ASRA的潜在调节剂,ASRA的潜在调节剂是由与Asra相邻的基因编码的ICP的蛋白质。我们还表明,在热震条件下,ASRA对于铜绿假单胞菌的存活至关重要。一起,这项研究表明,ASRA是一种重要的蛋白酶,它进化为占据铜绿假单胞菌中蛋白水解调节的不同壁ni。在研究III中,我们报道了对C. crescentus中名为Lara的新型LON调节剂的发现和生化研究,该调节剂在蛋白毒性应激下增强了LON介导的降解。我们通过体外测定法分析了其DEGRON的可转移性,并得出结论,其疏水C末端脱基龙很重要,但不足以调节LON。总而言之,我们报告了将LON与铜绿假单胞菌运动联系起来的新底物和途径,ASRA的表征调节了群体传感和热震反应,以及Lara作为C. C. C. C. c. c. c. c. c. c. c. c. c. c. cc. c. cc. c. cc. cc. cotc。。综上所述,本文中报道的研究扩展了我们对两个模型生物中LON蛋白酶的三种同源物的底物,细胞作用和调节机制的理解。这项研究的集合可能是研究细菌蛋白水解对环境和医疗保健研究的影响和潜力的宝贵资源。