泛素 - 蛋白酶体系统(UPS)是特异性细胞内蛋白质降解的主要途径,这是通过泛素标记的底物的蛋白酶体降解。许多生物学过程,包括细胞周期,转录,翻译,凋亡,受体活性和细胞内信号传导,受到UPS的调节。对UPS的改变或多或少容易降解,是肾脏疾病的疾病。本评论旨在总结肾脏疾病中UPS的机制。此外,本综述还探讨了UPS,自噬和肾脏疾病发展中的关系之间的关系。另一方面,这些系统和发病机理之间的特定分子联系是未知的和有争议的。此外,我们简要描述了一些靶向UPS成分的抗肾脏疾病药物。这篇评论强调UPS是治疗肾脏疾病的有希望的治疗方式。我们的工作虽然仍然基本且有限,但可以为未来潜在的肾脏疾病的潜在治疗靶点提供选择。
Genevieve Marcoux(瑞典隆德大学)AudréeLaroche(加拿大Chu deQuébec)Stephan Hasse(加拿大Chu deQuébec)Marie Bellio(加拿大Chu deQuébec,加拿大)魁北克) Zufferey(Quebec -Quebec-加拿大拉瓦尔大学)TaniaLévesque(加拿大微生物学和免疫学系)Johan Rebetz(瑞典实验室医学)Johan Rebetz(Annie Karakeussian) (加拿大蒙特利尔大学研究中心)Sylvain Bourgoin(加拿大魁北克大学医院中心研究中心)HindHindHindHindHindHindHindhindite Jean Monnet-Universite de Lyon,Fabrice de Lyon,Fabrice Cognasse(Lyon; French of Lyon; French Blass; French Blass; efs)荷兰)约翰·塞姆普尔(瑞典隆德大学)玛丽·乔斯·赫伯特(Marie-JoséeHebert)(加拿大蒙特利尔大学)法国皮雷恩(Paris University Paris是Créteil,Inserm U955加拿大蒙特利尔)Benoit Vingert(法国血液建立)Eric Boilard(Chu de Quebec,加拿大)
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
各种因素与溃疡性结肠炎(UC)的发病机理有关,免疫系统失败是最重要的。据报道降钙素基因相关肽(CGRP)是一种具有两种同工型CGRPα和CGRPβ的神经肽,可调节免疫系统。在这项研究中,我们研究了CGRP同工型在UC发病机理中的作用。我们使用硫酸葡萄糖钠诱导了CGRPα和CGRPβ基因敲除(KO)小鼠的UC样症状。与野生型和CGRPαKO小鼠相比,CGRPβ缺陷小鼠表现出严重的症状,粪便和腹泻的血液增加。蛋白质组分析表明,在CGRPβ缺陷型小鼠中,免疫相关蛋白和免疫蛋白酶体成分的显着上调,这表明增强的免疫反应有助于该疾病的严重性。通过免疫蛋白酶体抑制剂ONX-0914治疗显着改善了这些症状,突出了免疫蛋白酶体在加剧UC中的作用。这项研究提供了第一个证据,表明CGRPβ通过调节免疫反应,尤其是由免疫蛋白酶体介导的免疫反应来预防UC。我们的发现表明,CGRP同工型的功能差异可能会影响UC的严重性和管理。对UC的神经免疫机制的这种见解为解决该疾病的神经和免疫方面的新疗法开辟了途径。
3.4 FAT10 and NUB1L activate the 26S proteasome independently of the presence of USP14 .............................................................................................................................................. 64
小分子降解者,例如靶向嵌合体(Protac)或分子胶的蛋白水解是药物开发的新方式,也是靶验证的重要工具。两种模态都通过两个独立但连接的配体(Protac)或通过改变E3结合表面以募集Neo-Substrate(Molecular Glues)的小分子的结合来募集E3泛素连接酶(POI)(POI)(POI)。如果适当地进行了优化,则两种方式都会导致POI降解。由于诱导的多步降解过程的复杂性,降解器评估的控制至关重要,并且在文献中通常使用。但是,到目前为止,尚未发布这些对照化合物及其适当用途的细胞效率的比较研究和评估。此外,机制的高度多样性需要各种小分子控制,以确保对研究系统的适当抑制,同时保持潜在的细胞毒性和对细胞途径的无意影响。在这里,我们仔细检查了一组泛素途径抑制剂,并评估了它们在CRBN和VHL介导的POI降解途径中的效力和效用。我们使用hibit系统来测量用对照化合物处理后的目标拯救水平。此外,使用多重高含量测定法研究了细胞健康。该测定面板使我们能够确定对照实验的无毒有效浓度,并在没有细胞毒性的情况下进行救援实验,这对泛素依赖性依赖性和独立途径的靶标降解产生了深远的影响。
免疫蛋白酶体是一类特殊的蛋白酶体,可以在炎症环境中用IFN-γ诱导。近年来,很明显某些免疫细胞类型组成型表达高水平的免疫蛋白酶体。然而,关于不同类型的免疫细胞中蛋白水解的免疫蛋白酶体亚基的基础表达的信息仍然很少见。Hence, we quantified standard protea- some subunits ( β 1c, β 2c, β 5c) and immunoproteasome subunits (LMP2, MECL-1, LMP7) in the major murine (CD4 + T cells, CD8 + T cells, CD19 + B cells, CD11c + dendritic cells, CD49d + natural killer cells, Ly-6G + neutrophils) and human免疫细胞(CD4 + T细胞,CD8 + T细胞,CD19 + B细胞,CD1C + CD141 +髓样树突状细胞,CD56 +天然杀伤细胞,粒细胞)子群。从外周血和脾脏的鼠免疫细胞亚群中分离出不同的人类免疫细胞类型。我们发现,大多数免疫细胞子集的促性疾病主要由免疫蛋白酶体亚基组成。我们的数据将作为免疫蛋白酶体表达的参考和指南,这意味着免疫蛋白酶体在免疫细胞中的特殊作用。
减轻疟疾和相关死亡的负担受到了疟疾寄生虫能够发展对市场上所有可用疗法的抵抗力的能力的阻碍(Antony和Parija,2016年)。因此,了解寄生虫获得对抗疟药的耐药性的机制对于未来替代有效治疗的发展至关重要。如今,阿耳震蛋白及其衍生物(Arts)是推荐的治疗方法,以及长期伴侣,形成基于青蒿素的联合疗法(ACTS)。artemisin抗性,主要由环阶段存活测定法(RSA)定义,经常与K13蛋白中的突变有关,而K13蛋白不调节蛋白酶体的活性(Wicht等,2020)。然而,使用蛋白酶体抑制剂(例如环氧素)会增加抗性和敏感寄生虫中的青蒿素活性(Bozdech等,2015)。在该帐户中,泛素 - 蛋白酶体途径(UPP)的不同部分的突变可能会影响阿甘辛蛋白的反应(Bridgford等,2018)。最近的研究表明,19S和20S的蛋白酶体亚基的突变敏化K13 C580Y寄生虫,这是基于RSA的更大湄公河区域中最普遍的青蒿素耐药性突变,基于RSA(Rosenthal和Ng,2021; Rossenthal和Ng,20223)。此外,在编码非素化酶UBP-1的基因中的两个突变在抗甲半氨着这甲蛋白蛋白的抗chabaudi P. chabaudi寄生虫中被鉴定出来,并且证明它们可以介导恶性疟原虫中的艺术耐药性(Cravo,2022222)。后者负责底物的识别,去泛素化,展开和易位。泛素 - 蛋白酶体系统对于真核细胞至关重要,因为它负责蛋白质的降解或回收利用,侵蚀了几个细胞过程,包括细胞周期,转录调节,细胞应激反应,信号转导,信号转导,和细胞曲折(Wang et al。,2015年)。这种蛋白质调节对于在两个宿主之间的生命周期进程中发生的疟疾寄生虫经历的快速转化至关重要,尤其是在复制率高的阶段(Krishnan和Williamson,2018年)。UPP涉及一种称为泛素化的蛋白质后修饰过程,该过程将多泛素链连接到随后由26S蛋白酶体识别的蛋白质上。如果蛋白质被蛋白质组恢复或降解,则泛素化定义的类型(Aminake等,2012; Wang等,2015)。26S蛋白酶体是一种枪管形的多亚基蛋白酶复合物,分为20S核心颗粒(CP)和19S调节粒子(RP)。20S核心通过肽基戊酰基肽水解(PGDH)(caspase样),类似胰蛋白酶样和类似chymotrypsin的活性负责蛋白水解,分别遇到了三种B-亚基(B1,B2和B5)(分别为Wang et al。,2015年)。这些催化活性的亚基分别使用N末端苏氨酸作为酸性,胰蛋白酶和疏水残基的羧基末端后的亲核试剂和裂解。这些活动站点
先天或获得对小分子BRAF或MEK1/2抑制剂(BRAFI或MEKI)的抗性通常是通过维持或恢复ERK1/2激活的机制而产生的。这导致了抑制激酶催化活性(CATERKI)的一系列ERK1/2抑制剂(ERKI)的发展,或者还防止了MEK1/2通过MEK1/2激活ERK1/2的激活的PT-E-PY双磷酸化(双向力学或DMENISP或DMERKI)。在这里,我们表明八个不同的Erki(Caterki或dmerki)驱动ERK2的营业额为ERK2,这是最充实的ERK同工型,对ERK1的影响很小或没有影响。热稳定性测定表明,ERKI在体外不会破坏ERK2(或ERK1)的稳定,这表明ERK2离职是ERKI结合的一种细胞后果。ERK2周转率,这表明ERKI与ERK2的结合驱动ERK2转移。然而,MEKI预处理阻止ERK2 PT-E-PY磷酸化和与MEK1/2的解离,可防止ERK2的离职。ERKI的细胞处理驱动ERK2的多泛素化和蛋白酶体依赖性转移以及Cullin-Ring E3连接酶的药理学或遗传抑制可防止这一点。我们的结果表明,包括当前的临床候选者在内的ERKI充当“激酶降解器”,推动其主要靶标ERK2的蛋白酶体依赖性转移。这可能与ERK1/2的激酶非依赖性作用和ERKI的治疗使用有关。
DNA测序技术和生物毒素格式的进步揭示了微生物在医学和农业中产生具有不同用途的结构复杂的特殊代谢物的巨大潜力。然而,这些分子通常会重新检查结构修饰以优化它们以供应用,这可能是使用合成化学很难的。生物工程提供了一种互补的结构修饰方法,但通常会因遗传性棘手性而受到影响,并且需要对生物合成基因功能的理解。异源宿主中专门的代谢产物生物合成基因簇(BGC)可以解决这些问题。然而,当前的BGC克隆和操作方法是不具体的,缺乏实现的,并且可能非常昂贵。在这里,我们报告了一个基于酵母的平台,该平台利用了与转换相关的重组(TAR)进行高效率捕获和对BGC的并行操作。作为概念证明,我们克隆,杂酚表达和遗传分析了与结构相关的非核糖体肽epone-epone-epone- mycin和tmc-86a的BGC,阐明了这些重要蛋白质的生物合成中的模棱两可。我们的结果表明,epone- mycin BGC还指导TMC-86A的产生,并揭示了启动这两种代谢产物组装的对比机制。此外,我们的