图 1 心脏靶向(Gal4 Τ inC Δ 4 )蛋白酶体 Pros β 5 基因的 KD 导致蛋白质组不稳定和线粒体数量减少。 (a) Pros β 5 siRNA 后心脏组织中 Pros β 5 基因的相对表达(与对照相比)。 (b, c) Pros β 5 RNAi(与对照相比)果蝇心脏组织中相对 (%) 26S 蛋白酶体活性 (b) 和 ROS 水平 (c)。 (d) Pros β 5 KD 后果蝇心脏组织中蛋白质组泛素化 (Ub) 和羰基化 (DNP) 的免疫印迹分析。 (e) CLSM 观察用 LysoTracker 染色的 Pros β 5 RNAi(与对照相比)果蝇心管(e1)、LysoTracker 定量(e2)和使用溶酶体标记物抗 Lamp1(e3)进行免疫印迹分析。(f) 所示基因型果蝇心脏组织中蛋白酶活性的相对(%)。(g) blw/ATP5A 免疫荧光染色后,CLSM 可视化所示果蝇品系心脏组织中的线粒体;细胞核用 DAPI 复染。(h) Pros β 5 KD 后,所示基因型分离心脏组织中所示线粒体基因的相对表达水平(与对照相比)。在 (a, h) 中,基因表达与相应对照作图;使用 RpL32/rp49 基因作为 RNA 输入参考。 (d)和(e3)中的 Gapdh 和 Actin 探测分别用作蛋白质输入参考。p 值采用非配对 t 检验计算。条形图,± SD(n ≥ 3);* p < 0.05;** p < 0.01
免疫蛋白酶体是一类特殊的蛋白酶体,可以在炎症环境中用IFN-γ诱导。近年来,很明显某些免疫细胞类型组成型表达高水平的免疫蛋白酶体。然而,关于不同类型的免疫细胞中蛋白水解的免疫蛋白酶体亚基的基础表达的信息仍然很少见。Hence, we quantified standard protea- some subunits ( β 1c, β 2c, β 5c) and immunoproteasome subunits (LMP2, MECL-1, LMP7) in the major murine (CD4 + T cells, CD8 + T cells, CD19 + B cells, CD11c + dendritic cells, CD49d + natural killer cells, Ly-6G + neutrophils) and human免疫细胞(CD4 + T细胞,CD8 + T细胞,CD19 + B细胞,CD1C + CD141 +髓样树突状细胞,CD56 +天然杀伤细胞,粒细胞)子群。从外周血和脾脏的鼠免疫细胞亚群中分离出不同的人类免疫细胞类型。我们发现,大多数免疫细胞子集的促性疾病主要由免疫蛋白酶体亚基组成。我们的数据将作为免疫蛋白酶体表达的参考和指南,这意味着免疫蛋白酶体在免疫细胞中的特殊作用。
通过降解蛋白质降解进行过程。蛋白酶体抑制剂已显着提高了多发性骨髓瘤患者的存活率。然而,经临床认可的蛋白酶体抑制剂未能针对这样的盖子肿瘤功效,既不单独或与其他疗法结合。针对Severa l自身免疫性疾病和结肠CA N CER的临床前模型,针对免疫蛋白酶体的靶向免疫蛋白酶体已有效。此外,免疫抑制剂抑制剂可防止慢性排斥Ogeneic器官移植。近年来,抑制一个蛋白质5ome的一个活跃中心不足以实现治疗益处的抑制已变得已经变得明显了。在这篇综述中,我们总结了靶向多种催化活性蛋白酶体的最新见解,如何干扰自身免疫性,实体瘤的生长以及所有OGRAF T排斥的疾病进展。
DNA损伤反应(DDR)对于在挑战性环境中维持基因组完整性至关重要。DDR的调节机制在酵母和人类中已经建立了良好。然而,越来越多的证据支持这样的观念,即植物似乎采用了不同的信号通路,而这些信号通路基本上是未知的。在这里,我们报告了拟南芥(拟南芥)在DDR中与SNC1的修饰符,4相关的复合体亚基5A(MAC5A)的作用。MAC5A突变体中缺乏MAC5A会导致甲基甲磺酸甲酯(MMS),一种DNA损伤诱导剂。与该观察结果一致,MAC5A可以调节DDR基因的替代剪接,以保持对遗传毒性应激的适当反应。有趣的是,MAC5A与26S蛋白酶体(26SP)相互作用,并且其蛋白酶体活动是必需的。MAC核心亚基也参与了MMS诱导的DDR。此外,我们发现MAC5A,MAC核心亚基和26SP可能会协作以通过DDR进行高端诱导的增长抑制作用。总的来说,我们的发现揭示了MAC在MMS诱导的DDR中的关键作用在植物的生长和应激适应性中。
减轻疟疾和相关死亡的负担受到了疟疾寄生虫能够发展对市场上所有可用疗法的抵抗力的能力的阻碍(Antony和Parija,2016年)。因此,了解寄生虫获得对抗疟药的耐药性的机制对于未来替代有效治疗的发展至关重要。如今,阿耳震蛋白及其衍生物(Arts)是推荐的治疗方法,以及长期伴侣,形成基于青蒿素的联合疗法(ACTS)。artemisin抗性,主要由环阶段存活测定法(RSA)定义,经常与K13蛋白中的突变有关,而K13蛋白不调节蛋白酶体的活性(Wicht等,2020)。然而,使用蛋白酶体抑制剂(例如环氧素)会增加抗性和敏感寄生虫中的青蒿素活性(Bozdech等,2015)。在该帐户中,泛素 - 蛋白酶体途径(UPP)的不同部分的突变可能会影响阿甘辛蛋白的反应(Bridgford等,2018)。最近的研究表明,19S和20S的蛋白酶体亚基的突变敏化K13 C580Y寄生虫,这是基于RSA的更大湄公河区域中最普遍的青蒿素耐药性突变,基于RSA(Rosenthal和Ng,2021; Rossenthal和Ng,20223)。此外,在编码非素化酶UBP-1的基因中的两个突变在抗甲半氨着这甲蛋白蛋白的抗chabaudi P. chabaudi寄生虫中被鉴定出来,并且证明它们可以介导恶性疟原虫中的艺术耐药性(Cravo,2022222)。后者负责底物的识别,去泛素化,展开和易位。泛素 - 蛋白酶体系统对于真核细胞至关重要,因为它负责蛋白质的降解或回收利用,侵蚀了几个细胞过程,包括细胞周期,转录调节,细胞应激反应,信号转导,信号转导,和细胞曲折(Wang et al。,2015年)。这种蛋白质调节对于在两个宿主之间的生命周期进程中发生的疟疾寄生虫经历的快速转化至关重要,尤其是在复制率高的阶段(Krishnan和Williamson,2018年)。UPP涉及一种称为泛素化的蛋白质后修饰过程,该过程将多泛素链连接到随后由26S蛋白酶体识别的蛋白质上。如果蛋白质被蛋白质组恢复或降解,则泛素化定义的类型(Aminake等,2012; Wang等,2015)。26S蛋白酶体是一种枪管形的多亚基蛋白酶复合物,分为20S核心颗粒(CP)和19S调节粒子(RP)。20S核心通过肽基戊酰基肽水解(PGDH)(caspase样),类似胰蛋白酶样和类似chymotrypsin的活性负责蛋白水解,分别遇到了三种B-亚基(B1,B2和B5)(分别为Wang et al。,2015年)。这些催化活性的亚基分别使用N末端苏氨酸作为酸性,胰蛋白酶和疏水残基的羧基末端后的亲核试剂和裂解。这些活动站点
摘要:N,C耦合的萘二喹啉生物碱Ancistrocladinium a属于具有有效抗体活性的新型天然产物。然而,尚未探索其对肿瘤细胞的影响。我们证明了多发性骨髓瘤(MM)中Ancistrocladinium a的抗肿瘤活性,这是一种无法治愈的血液癌,代表了适应蛋白毒性应激的模型疾病。生存能力测定显示,Ancistrocladinium a在MM细胞系中具有有效的凋亡诱导作用,包括具有蛋白酶体抑制剂(PI)耐药性和原代MM细胞的细胞系,但在非电气细胞中却没有。与PI CAR纤维纤维或组蛋白脱乙酰基酶抑制剂Panobinostat的伴随治疗强烈增强了Ancistrocladinium a诱导的细胞凋亡。质谱法具有生物素化的Ancistrocladinium a揭示了与RNA-剪接相关蛋白的显着富集。影响与RNA相关的RNA相关途径包括参与蛋白毒性应激反应的基因,例如PSMB5相关基因和热休克蛋白HSP90和HSP70。此外,我们发现了ATF4和ATM/H2AX途径的强烈诱导,在蛋白毒性和氧化应激之后,这两者都与综合细胞反应有关。综上所述,我们的数据表明,Ancistrocladinium a靶向MM中的细胞应激调节,并改善对PIS或克服PI耐药性的治疗反应,因此可能代表有希望的潜在治疗剂。
Genevieve Marcoux(瑞典隆德大学)AudréeLaroche(加拿大Chu deQuébec)Stephan Hasse(加拿大Chu deQuébec)Marie Bellio(加拿大Chu deQuébec,加拿大)魁北克) Zufferey(Quebec -Quebec-加拿大拉瓦尔大学)TaniaLévesque(加拿大微生物学和免疫学系)Johan Rebetz(瑞典实验室医学)Johan Rebetz(Annie Karakeussian) (加拿大蒙特利尔大学研究中心)Sylvain Bourgoin(加拿大魁北克大学医院中心研究中心)HindHindHindHindHindHindHindhindite Jean Monnet-Universite de Lyon,Fabrice de Lyon,Fabrice Cognasse(Lyon; French of Lyon; French Blass; French Blass; efs)荷兰)约翰·塞姆普尔(瑞典隆德大学)玛丽·乔斯·赫伯特(Marie-JoséeHebert)(加拿大蒙特利尔大学)法国皮雷恩(Paris University Paris是Créteil,Inserm U955加拿大蒙特利尔)Benoit Vingert(法国血液建立)Eric Boilard(Chu de Quebec,加拿大)
有了新诊断的MM,较低的完全响应(CR)速率和对化学疗法的抗性仍然是临床中的主要挑战。因此,了解高风险MM患者耐药性的基础机制可能会改善其结果,并为个性化医学铺平道路。t(4; 14)(p16; q32)易位赋予成纤维细胞生长因子受体3(FGFR3)和含有核定核定域的2(NSD2,也称为WHSC1/MMSET)基因的高表达,也是MM中最常见的易位,是MM的最常见易位,占MM的ebs率之一,持续15%至20%至20%至20%至20%的MALOM(5)。NSD2是一种含有域的含有域的组蛋白甲基转移酶(HMT),该酶特异性催化H3K36二甲基化(H3K36Me2; ref。6)。NSD2参与MM细胞的增殖,凋亡和粘附,NSD2的HMT活性对于其在肿瘤性中的生物学功能至关重要(7)。在NSD2中的过度表述或功能增益突变会导致多种癌症(8-10)的耐药性,并通过协调五糖phate phate途径酶来使内分泌耐药性驱动内分泌耐药性(11)。最近一项回顾性研究表明,t(4; 14)易位与MM患者的高风险疾病特征有关,但它们也与对基于PI的治疗的更好反应有关(12)。实际上,另一个
摘要。背景/目的:迫切需要开发新药,以改善骨肉瘤 (OS) 的预后。在本研究中,我们试图确定针对骨肉瘤的新分子靶向药物组合。材料和方法:使用包含 324 种化合物的库。对于第一次筛选,用每种化合物处理 MG-63 OS 细胞并测量细胞活力。在确定最佳候选化合物后,将该化合物纳入第二次筛选。确定最有效化合物的组合。检查该组合的抗增殖作用,并通过蛋白质印迹分析评估细胞信号传导机制。使用 143B OS 小鼠进行体内抗肿瘤测试。结果:在第一次筛选中,硼替佐米被选为有效药物。在第二次与硼替佐米的筛选中,选择了依维莫司。与单独使用这些药物的单一疗法相比,这种组合显示出对细胞增殖的协同抑制作用。与单药治疗相比,联合治疗提高了裂解多聚(ADP-核糖)聚合酶、胱天蛋白酶-3、胱天蛋白酶-8 和胱天蛋白酶-9、磷酸化 c-Jun N 端激酶和 P38 的水平。相反,c-MYC 原癌基因 bHLH 转录因子、survivin 和磷酸化细胞周期蛋白 D1 的水平降低。该组合有效诱导细胞凋亡并干扰细胞周期进程。在体内分析中,联合治疗显著抑制肿瘤生长。结论:依维莫司和
摘要:蛋白酶体抑制剂是针对蛋白酶体的蛋白水解活性的部分,在某些血液学恶性肿瘤中表现出效率,在包括胶质细胞瘤(GBM)在内的其他类型的癌症中表现出效率。它们会干扰蛋白酶体调节的蛋白质水平,并导致GBM细胞的细胞周期抑制和凋亡。细胞周期抑制剂p21和p27的积累,以及生存的分子NFKB,Survivin和MGMT的水平降低,蛋白酶体抑制剂的细胞毒性是单独使用或与抗GBM细胞固定药物替莫泽尔疗法(TMZ)相结合时的蛋白酶体抑制剂的基础。在临床前研究中收集的证据证实了采用了两种最有前途的蛋白酶体抑制剂Bortezomib和Marizomib的临床试验的设计。最初评估了药物安全性剂量,最大耐受剂量以及与其他药物的相互作用,主要是在复发性GBM患者中。在2021年设计并完成了对接受Marizomib作为Stupp方案辅助的新诊断为GBM患者的III期研究,Stupp方案将患者作为平行控制臂进行了设计和完成。这项III阶段研究的数据表明,马里佐米不能改善GBM患者的PFS和OS;但是,对每个患者肿瘤的遗传和表观遗传背景的进一步分析可能会阐明单个患者对蛋白酶体抑制的敏感性。GBM细胞的突变和表观遗传组成,例如对TP53和PTEN的遗传改变或MGMT启动子甲基化水平实际上可能决定对蛋白酶体抑制的反应。
